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ABSTRACT

A radar is basically a measuring instrument for extracting informa-

tion from a received signal voltage. The amount of information that can be

extracted is ultimately limited by the noise background. The concept of

measurable information has been quantitatively developed in the literature
and provides a means by which substantial insight may be acquired into the

generalized nature of optimum radar processing.

The presented work exhibits an interpretation of radar information
consistent with intuitive views of radar processing as well as with formal

definitions of information theory. The approach has led to the following

specific results.

(a) A unified description of the mechanism by which both detection

capability and parameter estimation are optimized simultaneously. A two-

dimensional matched filter is described in which the ideal radar processing

is seen to consist of a two-dimensional "involution" in which the signal' s

input energy area in the time-frequency plane is compressed into an interior

area.

(b) The two-dimensional compression of Item (a) can be increased,

in both the time and frequency domains by a factor of I7P, where p is two

times the signal-to-noise energy ratio, by employing an envelope detector

having the characteristic of 10 (x), the modified Bessel function.

(c) The definition of a "distributional" type of physical entropy

that is associated with parameter information. For a given a priori sur-

veillance window within which we search for a target, it is shown that there

is a minimum threshold energy ET required to make a meaningful measure-

ment. Furthermore, the total amount of range and Doppler parameter in-

formation obtained is bounded such that the information is always less than

the threshold entropy ET/ ,where 7 is the equivalent noise temperature

of the radar. It is also shown that the minimum signal-to-noise energy ratio

required to detect the presence of a signal immraersed in one noise mode

(independent sample) is equal to a defined "absolute" information entropy

of the noise sample, which is calculated to be unity.

(d) An equivalence between the amplitude detection threshold com-

monly employed in radar and the energy threshold employed in physics for

setting the "reliability" of a measurement.

FI
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(e) The development of a new detection procedure - -"d u.pon a

defined Rdetection information" and the employment of the NC. :,:. ,'•earson

procedure in the threshold-crossing rate domain rather than in tne standard

amplitude domain.

(f) A new representation of band-limited or time-limited Gaussian

noise based upon the identification of independent noise "modes" in the time-

frequency plane, with each mode having an energy described by the Boltzmann

factor of statistical mechanics and occupying an area of one logon in the time-

frequency plane.

(g) An explicit formula for parameter information in terms of a

multiple -target echo ambiguity function.

(h) By defining a distributional type of information in a gas problem

involving thermodynamic entropy, a formula is derived which is directly

analogous to Shannon' s formula for the information communicated through

a noisy channel.

I
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1. INTRODUCTION

1.1 Summary

A radar is basically a measuring instrument for extracting information from a

received signal voltage. The amountof information that can be extracted about such

signal parameters as range delay and Doppler frequency is ultimately limited by the

noise background. Radar theory has shown that both detection capability and parameter-

estimation accuracy are explicitly dependent upon the ratio of total received signal

energy to noise power spectral density (for white Gaussian stationary noise). Further-
more, both detection capability and parameter estimation are optimized, within the

class of linear filters, by the so-called "matched filter" .

The concept of measurable information has been quantitatively developed in the
literature and provides a means by which substantial insight may be acquired concern-

ing the generalized nature of optimum radar processing. It is apparent that a radar

obtains information only upon reception of a quantity of energy. Moreover, the amount

of information acquired depends upon the degree of concentration (in time and frequency)

of the input energy as it is introduced. The degree of concentration, in turn, is meas-

urable in terms of the increase in physical entropy experienced by the radar instrument.

We find that a greater amount of input information implies a smaller increase in entropy.

In fact, a negative form of entropy (negentropy) can be defined which implies the avail-

ability of thermal work due to mixing or diffusion. This negentropy is received when-

ever information is obtained. If a non-dissipative process is assumed in which input

energy is conserved, it is concluded that availability of thermal work is created when-

ever information is received. We have therefore arrived at a principle of a cybernetic

nature, namely, that information (of the type considered) is interpretable as a physical

entity rather than only an arbitrary "measure". (Section 3. 3)

If the input energy is not well concentrated in time or frequency (or both) as it

enters the radar, maximum information may still be extracted by using a matched

filter. The role of the mdtched filter is interpretable as the reverse of diffusion. That

is, it compresses the area occupied by the inpat signal energy in the time-frequency

plane (with signal time-bandwidth products greater than unity). For example, suppose

we are using a linear-FM (chirp) signal with a relatively wirde bandwidth of B cps. The

matched filter has a comparable bandwidth. At the matched filter output, the signal

energy is compressed into a time interval of 1/B seconds which is also the duration of

* Section references in parentheses refer to sections of this dissertation where the
subject is primarily developed.



an output independent noise sample. Let us assume that the input pulse has a duration

of P scconds and the a priori ancertdinty in our knowledge of range delay extends over

a range window of T seconds. At the input to the matched filter, the received range

information is measurable as log 2 T/P bits, whereas it is log 2 TB bits at the matched

filter output. We now have

log, TB > log, T/P , (1. 1)

since PB > 1 for signals with time-bandwidth products greater than unity. Therefore,

the matched filter may be said to have increased the measured information (and negen-

tropy). (Section 3. 2).

Physical entropy is the ratio of ,n erergy increment to absolute temperature

and, in radar, it is shown that this is synonymous with signal-to-noise energy ratio.

Thus, the analysis of optimum radar processing in terms of information theory leads

to significant relations among various quantities such as information entropy, physical

entropy and signal-to-noise energy ratio. Furthermore, it becomes evident that radar

detection capability and (range-Doppler) parameter estimation are necessarilr opti-

mized by the same mechanism which involves a compression of the signal' s energy

area in the time-frequency plane. (Section 3. 2).

The presented work exhibits an interpretation of radar information consistent

with intuitive views of radar processing as well as with the formal definitions of infor-

mation theory. Moreover, the additional insight provided by the approach has lead to

the following specific results:

(a) A unified description of the mechanism by which both detection capability

and parameter estimation are optimized simultaneously. A two-dimensional matched-

filter concept is described in which the ideal radar processing is seen to consist of a

two-dimensional "involution" in which the signal' s input energy area in the time-fre-

quency plane is compressed into an interior area. The two-dimensional matched filter

is found to be a time-frequency gate which overlaps the signal' s input energy area in

the time-frequency plane. (Section 3.2).

(b) The two-dimensional compression of Item (a) can be increased, in both

the time and frequency domains by a factor of jp, where

= ZE Z 2 x signal energy '1.
IT- =" noise powe: spectral density

0

by employing an envelope detector having the characteristic of the modified Bessel

function (of first kind and zero order) Io(x). (Section 3. 2).

(c) The definition of a "distributional" type of physical entropy that is

¢I
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associated with parameter information. For a given a priori surveillance window

within which we search for a traget, it is shown that there is a minimum threshold

energy ET required to make a meaningful measurement. Furthermore, the total amount

of range and Doppler parameter information obtained is bounded such that the information

is always less than the threshold entropy ETT/', where 9 is the equivalent noise tern-

perature of the radar. It is also shown that the minimum signal-do-noise energy ratio

required to detect the presence of a signal immersed in one noise mode (indcpendent

sample) is equal to a defined "absolute" information entropy of the noise sample,

which is calculated to be unity. (Sections 3. 1, 3. 2, 3. 3).

(d) An equivalence between the amplitude detection threshold commonly

employed in radar and the energy threshold employed in physics for setting the
"reliability" of a measurement. (Section 3.1).

(e) The development of a new detection procedure based upon threshold-

crossing rate. In this method, the amplitude threshold is set to maximize "detection

information" . Using this optimium amplitude threshold, a specific false-alarm thresh-

hold-crossing rate is thereby established and accepted as normal. A data-rate thres-

hold is then set. for a selected probability of a "false-alarm type of mistake" (or Type-1

error in statistical estimation theory). If the threshold-crossing rate should exceed

the established data-rate threshold, a target is judged to be present. Thus the statis-

tical Neyman-Pearson approach is applied to the (threshold-crossing) rate variate

rather than to the voltage amplitude. In one example using realistic radar parameters,

it is shown that the detection-information procedure increased the detection probability

from 40% (using the more conventional Neyman-Pearson procedure on amplitude) to

89% after 5 seconds of processing at a fixed overall false-alarm probability of 1% and

a signal-to-noise ratio of 6 db, Furthermore, in the detection-information method,

there are no "false alarms' in the usual sense which then obligate the radar to take

further measures to confirm or reject the hypothesis that a target is present. That is,

amplitude-threshold crossings are expected to occur on an occasional basis in the

detection-information procedure. It is the increase in this threshold-crossing rate

which is important. The possibility of a "false alarm type of mistake" stems from the

uncertainty in determining the rate due to a finite observation time. (Sections 4. 1,

4. 2, 4. 3 and Chapter 6).

(f) A new representation of band-limited or time-limited Gaussian noise is

utilized which -s analogous to a two-dimensional Karhunen-Loeve expansion. The
S~representation is based upon the identification of independent noise "modes* in the

time -frequency plane, with each mode having an energy described by the Boltzmann

factor of statistical mechanics and occupying an area of one logon in the time-frequency

plane. This noise representation is particularly useful in the information-anal-,sis of
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radar but should also be found helpful in other noise problems.

(g) An explicit formula for parameter information is derived in terms of a

multiple-target echo ambiguity function. The formula yields results which are con-
sistent with intuitive notions and formal definitions of information. Consideration of

these results shows that contour areas may be defined similar to "ambiguity areas' .

An explicit interdependence coefficient between range and Doppler information is de-

fined which is unity for linear-FM modulation and zero with no frequency modulation

(pulsed-CW). The parameter-information formula may also be used for waveform
evaluation. For example, the decrease in total received information may be computed
for two proximate targets of various amplitudes as their spacing is decreased to zero.

(Chapter 5).

(h) By defining a distributional type of information in a gas problem involving

thermodynamic entropy, a formula is derived which is directly analogous to Shannon' s

formula for the information communicated through a noisy channel. (Section 3. 3).

1. 2 Historical Background

The early radars transmitted simple pulses of energy at a constant frequency.

The i-f bandwidth (in cps) was empirically determined1 to be optimum when it was

chosen approximately equal to the reciprocal to the pulse width (in seconds). At that

time, the expression "signal-to-noise ratio" generally referred to the ratio of rms

echo signal voltage to rms noise voltage, i. e.,
Arms Arms

Signal-to-noise voltage ratio = SNVR = rm = m- (1.3)

where

Arms = rms voltage of pulsed sinusoid

a N = rms noise voltage

No = white noise power spectral density

B i-f bandwidth.

The signal-to-noise power ratio is then

A2 A2
rms rmsSNPR = s - (1.4)

a N NoB

If we multiply the numerator and denominator of Eq. (1. 4) by the signal pulse dration

P, and use the optimum i-f-bandwidth condition

B_ U
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then Eq. (1. 4) becomes

AN2 P AZ

SNPR rms rmsP EZ Z/B (.6

in which

E = signal-pulse energy

No = noise power spectral density = k 7, where k is Boltzmann' s

constant and g is equivalent noise temperature.

Therefore, with the pulsed-CW signal, application of the optimum-bandwidth condition

of Eq. (1. 5) leads to the result that the SNPR is equal to a ratio of signal and noise

energy qCantities:

SNER (1.7)

The SNER is a more general parameter than the SNPR or SNVR since it involves only

signal and noise (energy) properties, but no explicit radar characteristics. This re-

sult is a consequence of using the optimization condition of Eq. (1. 5).

The generalized importance of the SNER became more evident as the theory

and practice of radar advanced beyond the use of simple sinusoidal pulses. Radar

theory advanced along two distinct paths, respectively referred to as detection and

parameter estimation, and the SNER attained prominence in both areas. In a paper

concerned primarily with detection, North showed in 1943 that, with an arbitrary

signal waveshape, the linear filter which maximized the ratio of peak output signal

power to mean-square output noise possessed a frequency response function which was

the complex conjugate of the input signal spectrum (Fourier transform). Moreover,

under these optimum-detection conditions, the ratio of output peak power to mean-

square noise was found to be E/N° for the bandpass case. Thus, for a general signal

wave shape, the detection capability depended ultimately upon the SNER, whereas the

SNPR and SNVR merely appeared as special cases appropriate mainly for the pulsed-

CW signal. Numerous papers dealing solely with the detection problem appeared, and

various approaches were developed such as the application of the Neyman-Pearson
statistical estimation procedure to output voltage amplitude, the Ideal Observer 6

the- Observereion2 , 3, 7-14, 15-18
the Bayes Criterion - the Sequential Observer , Inverse Probability

zero-crossing criteria1 9 and non-parametric methods 0

In the area of parameter estimation, general waveshapes were also treated.

In work by Woodward and Davies15 "1 7 using the approach of "inverse probability3 ,

f it was shown that range delay could be measured with an ultimate accuracy of

J4
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a (1.8)

where
w= standard deviation of range-delay measurement

4--= a normalized signal bandwidth

p = ZE/N .

18, 21Further results , of a more generalized nature, involving the joint estimation of

range delay - and Doppler shift 4,, showed that the Doppler frequency could be deter-
mined to an accuracy of

a = 1 , (1.9)

where,

whr4 =standard deviation of Doppler frequency measurement

t = a normalized signal duration

p = 2E/No

As in the radar detection problem, the analytical results dealing with parameter esti-
mation again revealed the preeminence of the SNER in governing the ultimate limita-
tions of radar measurements.

A synthesis of the two areas of detection and parameter estimation tended to
develop with the recognition that the same filter which optimized detection capability

also implemented the required correlation operation by which the optimum parameter-

estimation process was accomplished. This is the so-called North filter, or matched

filter.

The concepts of information theory were originally developed in a context some-
22what remote from the radar application. In 1924, Nyquist considered limitations on

the rate of telegraph transmission and utilized a logarithmic measure of information.

This logarithmic measure was later employed by Hartley 3 , and then developed into

an elaborate and rigorous framework, called information theory, by Shannon 4 . The
term (informaiion) entropy was employed in connection with the concept of information

evidently because of the similarity in form between the logarithmic measure of a

number of alternative states to be communicated and the physical entropy of statistical
mechanics which has been related to the logarithm of the number of states (or com-
plexions) of a physical system.I

I,
[ . . . . .- - . . . . o
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Some results of information theory were related to radar applications17, but

without substantial expansion of the approach by later investigators. However, signi-

ficant relations were observed by Brillouin2 5 between the entropy measure used in

information theory and the physical entropy of thermodynamics and physics. These

were brought out by examples in -rious types of physical measurements. -.

As a result of the historical development reviewed above, the fields of radar

and information theory have progressed to a point where it has become possible to

take a more unified and quantitative view of generalized optimiun radar processing,

and to relate the amount of information -eceived by a radar to the amount of input phy-

sical energy required to obtain it. This approach has been pursued in the present

dissertation. In addition, interpretations of the role of the matched filter as a device

for optimum information extraction, and various other results, have been derived as

described in Section 1. 1.

Y
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2, TIdAE-BANDWIDTH-LIMITED GAUSSIAN NOISE

2.1 Conventional Methods of Analysis
)

When stationary noise is treated, standard aLalytical techniques involve the use

of an autocorrelation function2 6

RxlT) = lira x(t + lr):c(t) dt (2.1)
T-- co -T

where x(t) is a real noise waveform. The power spectral density is then given by the

Fourier transform relationO D -j 2 7t f T
-x ~ e fOD Rf'r d e (2.2)

by the Wiener-Khintchine theorem. 27

28If the noise is not stationary, a useful approach is that employed by Bello,

Letting

x(t) = x(t) e j2• fot (2.3)

represent a complex narrow-band noise time function, where Z(t) is the complex modu-

lation and f is the carrier frequency, then a time-varying complex autocorrelation

function is defined in the time domain as

r(t, s) = ' (tM (s) (2.4)

where t and s are two time instants, the overhead bar denotes an ensemble average,

and the * represents the complex conjugate operation. If X(f) is the Fourier transform

of Z(t), then an analogous frequency-varying autocorrelation function may be defined in

the frequency domain by

R(f. 1) = X*(f) R(1) *(2.5)

Using
-00-c -jZirft

X(f0= ; x(t) e dt , (2.6)

in Eq. (2. 5), we have
I OD OD -jzi (s8 - ft)

oR(fE) f f x (t) Z(s) e dt ds
-00 -0D

OD OD -jzir (st - ft)
fo fO r(t, s) e dt ds (2.7)
-00 -0A:

___________________..•'~ . , " t;
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Eq (2. 7) expresses a fundamental duality between the time and frequency domains,

with the two domains being related by a double Fourier transform. It should be noted

that the analysis proceeds either in the time domain or the frequency domain. How-

ever, in the following material we shall work in both domains simultaneously by deal-

ing with areas of the time-frequency plane. This method will be found particularly

useful for the information-theory approach to radar analysis.

2. 2 Two-Dimensional Representation

2.2.1 Noise Occupancy in the Time-Frequency Plane

We consider first the case of white Gaussian noise which is bandpass-

limited to a bandwidth of B cps. At the output of the band-limiting filter, the noise will

be observed for a time duration of T seconds. By the sampling theorem for bandpass-

limited noise, there are TB independent noise samples involved, with each sample

having two "degrees of freedom$ such as amplitude and phase (or the real and imaginary

parts of the complex voltage). It is important to observe that we are not physically

limiting (truncating) in both time and frequency, which cannot be rigorously defended.

(That is, the Fourier transform of a truncated time function extends through an infinite

range of frequencies.) We are, in fact, truncating only in frequency and then observ-

ing for a specific time. This type of noise will be described as boundary-limited in

the frequency domain and window-limited in the time domain. The situation is portrayed

in Fig. 2. l(a). Each rectangular sub-area represents an independent noise samnple

with two degrees of freedom covering an area of unity in the time-frequency plane.

Such a unit of area will be called a "logon", following Gabor. 29

The dual of the preceding case is shown in Fig. 2. l(b), where the noise has been

time-gated to a duration of P seconds. The frequency axis then represents the inde-

pendent noise samples as observed by a spectrum analyzer. The presence of independ-

ent noise samples in the frequency domain after time-gating may be less famniliar than

independent samples in the time domain after bandwidth-limiting. An experimental

display of this phenomenon will be found in reference 30, Fig. 6. As in the previous

dual case, each independent noise sample again occupies an area of one logon with the

frequency separation between samples being 1/P cps.

2. 2. 2 Application of the Boltzmann Factor

The concepts of the preceding section can be conveniently formalized by

an interpretation involving the Boltzmann factor of statistical mechanics. We consider
a physical system at a temperature.e which possesses n degrees of freedon, where

each degree of freedom may occupy any one of M possible energy levels with equal

likelihood in the absence of any other constraints. In a classical problem of physics,

' ithe question is asked, "What is the most probable energy state of the system subject

- - - -- - -
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to the two constraints that: (a) the total number of degrees of freedom is a constant,

and (b) the total system energy is a constant?" To solve this problem, let FO be

the overall number of ways that n degrees of freedom can occupy M energy levels.

Now suppose a situation in which nI degrees of freedom are in level El, n2 degrees

of freedom are in level E2 ,..., and nM degrees of freedom are in level EM. By

combinatorial analysis, the number of ways in which this can occur is

F n (2.8)
n 11 n 2 *T.-..nM

The relative frequency for this condition is

F InF Irn n 1 (2.9)

where P may be taken as the probability of the state represented by Fi. We wish to

maximize P subject to the constraints

n n. = number of degrees of freedom = a constant (2.10)

M

ES = S niEi total system energy = a constant . (2. 11)
"3i= 1

Using principles of variational calculus3 1 ' 32 it has been found that the niost probable

energy state of the system is such that the energy of any degree of freedom has a

probability distribution E.

p(Ei Ot e (2l)

where

k = Boltzmann' s constant.

As the energy levels are taken closer together, the probability distribution approaches

the continuous form

Efp(E) a e- (2.13)

The exponential e k is known as the Boltzmann factor.

If we assume that p(E) may be normalized directly, then

E00 CO -

fo pE) dE fo - e dE 1 (2.14)
0 0
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where y is the normalizing constant. Direct integration yields

=Y , (2.15)
k9

and thus E -

p(E) = I e- (2.16)
k 7

It may be'noted, however, that such an exponential probability density function is the

Chi-sqaare distribution with two degrees of freedom. This form would apply for a

physical system composed of many harmonic obcillators. Each harmonic oscillator

possesses two degrees of freedom and the energy variate E in Eq. (2. 16) would be

applicable for each harmonic oscillator as a unit. We shall call such a unit (with two

degrees of freedom) a mode.

Using Eq. (2.16), it is found that the average energy of a mode is

=f Ep(E) dE k.1 (2.17)0

The standard deviation is

1E = .. (E -E) p(E) dE = , (2.18)

which is the same as the mean value.

To illustrate the applicability of these results to the noise problem, we refer

back to Fig. 2. l(a). There are TB noise modes comprising the noise waveform. If

the average energy of each mode is k , then the total average energy of the noise

waveform is

E = TBk9 . (2.19)
S

Since this average energy is spread over a time T, the average power is

P = k, 7 B (2.20)

2
which is immediately recognized as the available noise power (a;) of white noise that

has been bandlimited to B. Finally, the power spectral density is given by

No P k.?Zl
NT--. (iI
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Once allowing the validity of the above approach, it is seen to be a simple derivation

for the power spectral density of white noise as compared, for example, with the

method of reference 33. A block diagram ior observing the type of random noise pro-

cess being considered is shown in Fig. 2. Z, which is self explanatory. The system

essentially observes a manifestation of the so-called "available* noise power.

We can obtain a further result of significance by considering the voltage waveform

just prior to envelope detection. This waveform is sketched in Fig, 2. 3. It is possible
1

to identify the individual modes as Ipackets" of energy of time duration At -w
The energy of such a mode would be given by

R2 R2

E - R2 At R , (2. 22)
2 2B

where R is the peak envelope voltage of the mode. The probability density function for

R is therefore determined from the Jacobian of the transformation between E and R as

dE R R (
p() = p(E) (2.23)k. ?B

which is the Rayleigh distribution, as would be expected. The Rayleigh distribution,

of course, characterizes the amplitude of the vector sum of two orthogonal Gaussian-

distributed component vectors. These component vectors represent two degrees of

freedom and may be thought of as the reaT. and imaginary parts of the complex voltage

envelope, as used by Rice.34

2. 2.3 Karhunen-Lod"ve Expansion in Two Dimensions

The type of noise representation developed in the preceding section in-

volves a characterization in both the time and frequency domains simultaneously,

rather that the more conventional approach of working in one domain or the other with

connecting Fourier-transform transitions. The two-dimensional approach may be

formalized further by using a Karhunen-Logve type of expansion in two ver,-"aes. We

may, for example, define a "state function' $(t f) by the expansion

4a(t,. = a (t,f (2.24)

where the case in Fig. 2. 1(a) is being treated. In general, the coefficients ai may be
complex. Each of the eigenfunctions 45i(t, f) will represent a noise mode and the follow-

ing orthonormality conditions will obtain

OD ODt 2.5
f fo t..(o , tf dt6 (2.z

0 4O
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where 6i. is the Kronecker delta iunction. Since each noise mode is constrained to

occupy an area of one logon in the time-frequency plane, the Heisenberg uncertainty

(or indeterminacy) principle applies. There is a Fourier-transform constraint between

the time and frequency axes for each mode. To illustrate this, we may consider the

white noise to be composed of impulses (as is ordinarily done) as it enters the filter

of bandwidth B cps. The output of the filter therefore consists of a multitude of impulse

responses, many of which a-e too close together to be resolvable due to the finite filter

bandwidth. A resolvable impulse response of the filter, however, and the filter' s fre-

quency response function (of width B in this case) are Fourier transform pairs, and

together they encompass one noise mode.

Letting the center frequency of the filter be f and choosing equally spaced central
0

time instants t. for each mode, as shown in Fig. 2. l(a), with i = 1, 9,..., TB, then the

Fourier constraint may be applied as

SOD -jZV it

4,i (ti, f = f 4.i(t, f ) e dt (2. 26a)

. (t, fo f cc (t., f) e df (2. Z6b)

t If we consider the energy of the process to be

TB

ES fo 1jý (t,f) 4(t, f) dt df ai 2 (2.27)

thenI ~ ~Ei =Jail? z~a

may be interpreted as the energy of the ith mode having a probability density function

given by the directly-normalized Boltzmann factor and having an average value of~~M k9 for all i. The absolute values Ia.laeteeoeRylihd~rbtd

r .. .. .. y l-tuot-EL.1-e4cample of consi-stevt fuactio_.s %atisfying.tiv .stat.e.c1ondi-...

Lions from the situation of Fig. 2. l(a). Let

f) (t,fo) i (ti, f (.29)

which is a product of two functions. For a rectangular passband, suppose

4-i-Jit(" °f),. . , (2. 30)S(tiw fod K rect (-f-.f )e j2r (ff0) TI = I,Z9,...TB (

where Woodward' s notation17 has been employed, namely, & i

A:Il
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rect (X) 1 < (2.31)

2

and K = a constant.

Using the constraint of Eq. (2. 26b),

co , e jz•r ft4i~t' fO) = f-O i (Jtif e if df

f 00 ý

KB sinc (B (t + Ti))e j2w fot (2. 32)

where17

sinc (y) sirm'ry (2.33)

Then Eq. (Z. 29) gives

2 f-f j 27T['ot - (f- £o)ri
k~ilt, f) K KB rect (-•-r-)sinc (Bit +Ti) ) e (2. 34)

In order to satisfy the orthonormality conditions of Eq. (2. 25), we require

Co Coi (t. f) j(t, f) dtdf 6..

0 Co 2o f'_f jAir (f'f)(° i- 'C )S= f~co ~coT- BBrectz ( - )sinc(B (t +¢i))sinxc(B(tT +,)e

00 OD (2. 35)

K f JBrect2  (f-f°)()e 1 df.f Bsinc(B(t+1r,))sinc(B(t+-r))dt.
OD B -Co

This is satisfied by the conditions

K 4 1 . i4  , T (2.36)

.* . -since 3 5 .

J B sinc(B(t + -)) sinc (B(t + -))dt = 6(2.37)
S~-OD

Finally, the characteristic functions satisfying all specified requirements is, from

Eqs. (2. 34) and (2. 36),

f- i

4'(i) et..~icBt .) =12..T 2 8
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3. RADAR SIGNAL PROCESSING 3 6 ,37

3.1 Pulsed-CW Radar

3.1.1 Measurement of Range Only

In order to develop some fundaxmental relations involving radar information,
we shall first consider a simple pulsed-CW radar for the measurement of range only.
It is assumed that the target is known to be approximately stationary in space. A
block diagram of such a system is shown in Fig. 3. 1, where the optimum i-f band-

width B is used. I.e.,

-B 1 .cps 1)

for a pulse width of P seconds.

On the CRO display, we observe noise modes having a time-width of P seconds,
due to the i-f bandwidth restriction of B cps, and a signal echo response also having
a width in the order of P seconds. (Ideally, for a rectangular transmitted signal
envelope and a rectangular i-f filter pass band, the signal response at the output of
the i-f filter is trianguler with a base width of ZP seconds.) The property that the
signal response has the same duration as a noise mode is characteristic of all matched-
filter radars and it will be shown later that this condition is optimum in terms of the

f radar' s efficiency in acquiring information.

Consideration of the radar output, as displayed on the CRO in Fig. 3.1, indicates
the need for a threshold test to establish a measurement "reliability". Clearly we
cannot accept all identifiable peaks as signal responses since most of them are due to
noise. However, if a sufficiently high amplitude threshold level RT is set, as illustra-
ted in Fig. 3. 1, then reasonable assurance can be obtained that a threshold crossing
is indeed due to the presence of signal and not due to noise alone. Higher threshold
settings imply greater measuremett reliability but decreased sensitivity to low-level

signals.

A reasonable way to evaluate the efficacy of the threshold level setting is to com-

pute an overall falne alarm probability given by

PFA I I- (I - P'TB(3.Z)

where

TB = total number of independent opportunities for a threshold-
crossing due to noise alone, within the range-delay surveil-
lance window T
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PFA - probability that a single noise mode will cross the

amplitude threshold

PFA - probability that one or more threshold crossings will

occur due to noise zione.

For

TB PFA < < , (3.3

as is usually the case, we have

PFA T B PFA (3.4)

by use of a truncated binomial expansion. Since the measurement reliability increases
25with decreasing values of PFA' it is reasonable to define a reliability factor r, given

by
FA 1

Now, from Eq. (2.16), ET

P1A = 7 e dE = e (3.6)

T

where

ET = modal energy threshold corresponding to amplitude

threshold RT.

Substituting Eqs. (3. 5) and (3. 6) into Eq. (3.4) and taking the natural logarithm of

both sides of the resulting equation, it is found that

ET
T = Inr TB . (3.7)

Certainly a measurement with r < 2 would be sufficiently unreliable to be meaningless,

since this would imply an overall false alarm probability of greater than 50%. Thus,

for any meaningful physical measurement, we must have

T > lnTB . (3.8)

Now consider the amount of information obtained by the measurement. Prior to

any observation, the target range delay was presumed to be somewhere within the a

priori surveillance window of T seconds. After the measurement, the signal may be

localized to a range-delay interval of 1/B = P seconds, assuming that the threshold

has been crossed. From the standard approach of information theory, the uncertainty

1' __
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has been reduced by a factor of T/P = TB so the acquired information is

I('= log 2 TB bits , (3.9)

where the superscript (2) indicates that a logarithmic base of 2 has been employed.

The information may also be expressed in other units. For example, it may be said

that the information obtained is

I (e) In TB natural units (called nits or nats) (5. 10)

or

it k In TB thermodynamic units , (3. 11)

where k is Boltzmann' s constant. The latter form is derived by analogy with the reu.t

of statistical mechanics that thermodynamic entropy is equal to k times the natural log-

arithm of the number of system "complexions* in the most probable state of the system.

Tt is now possible to reach the conclusion that, for any meaningful measurement

of range delay in the problem posed, we have

SET >(e) (3.12)

or

E
> I (3.13)

t

That is, the signal-to-noise energy ratio E/k . always exceeds the information obtained,

where the latter is expressed in natural units, or equivalently, the input entropy quan-

tity E/7 always exceeds the information expressed in thermodynamic units. In any

measurement, we would like to maximize It as much as possible, but it can be no

greater than ET/,7 . The inequalities of Eqs. (3. 12) and (3.13) establish an equivalence

between the SNER employed in radar terminology with the concept of physical entropy.

They also specify a lower bound on the input SNER required to make a measurement

which can provide a specific amount of information I(e), However, they do not expli-

citly specify what information advantage or disadvantage is incurred if a high reliabil-

ity factor r is employed, or if the input SNER exceeds the threshold value by a signifi-

cant amount. These questions will be more clearly formulated in the later discussions.

3.1.2 Measurement of Doppler Only

'We shall here consider a pulsed-CW radar for the measurement of

Doppler shift only. The basic block diagram for the system is shown in Fig. 3. 2.

The spectrum analyzer may be thought of as a bank of contiguous filters of bandwidth

SB = I/P cps, or a Coherent Memory Filter3 0,38 The surveillance window is now in

the Doppler domain and is designated as W cps. The number of independent noise

A 1:it

1 __ _ _ ___ _ _ _ _ _ _ _ _ _ _ _ _I
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modes within the surveillance window is PW and therefore the threshold energy must

be such that

T > n Pw (3 14)

in order for the reliability factor r to be at least a value of 2. Since the information is

I(e) = ln PW (3.15)

we again have the result stated in Eq. (3.12).

3. 2 Radars with General Transmitted Waveforms

3.2, 1 Chirp Radars for the Measurement of Range Only3 9 ' 4 0

We consider first a special waveform of major importance, namely,

linear-FM modulation, as illustrated in Fig. 3. 3 (a) by an instantaneous frequency-vs-

time plot along ride of the signal spectrum. As with the pulsed-CW range-only

measurement, the target is assumed stationary in this example. The matched filter

has a frequency response function which is the complex conjugate of the signal spec-

trum shown in Fig. 3. 3 (a). Therefore, the output noise modes have a duration of I/B

compressed to a time width of 1/B seconds. The number of independent noise modes

in the surveillance window is TB and therefore the threshold energy must bo such that

SET
- > 1n TB , (3.16)

and Eq. (3. 12) again holds. (The block diagram is shown in Fig. 3. 3(b).

3.2.2. Simultaneous Measurement of Range and Doppler Shift

3.3. 2. 1 General Two-Dimensional Compression (Maximum-Likelihood

Receiver)

3. 2. 2. 1. 1 Linear Detection

In this more general case, the theoretical radar model is as shown in
17

Fig. .". 4. Following the method of inverse probability for the joint estimation of

range delay and Doppler shift (single target assumed), we wish to determine the values

of T and , which maximize the a posteriori (conditional) probability p(r, /t) . By the

Bayes equality, we have

p( = p (;/ , (3.17)

Complex signal notation is used, as reviewed in Appendix A.

° W
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where

P(T, 4/r) z conditional a posteriori density function for T and +,

given the received noisy signal 4(t) = inverse probability

P(T,4) = a priori probability (before the measurement)

p(Q/T, 4) = likelihood function
Co

p(r) = a normalizing function such that f p(T. +)/t) d T d4 = 1.
-CO

If p(T,4) is uniform, it is seen that the method of inverse probability leads to a maxi-

mum likelihood estimate since maximization of p(Tr,4/;) is then equivalent to maximi-

zation of p(t/!, 4). Following this customary assumption of a uniform a priori distri-

bution, it follows that

PVT/,) =M W~t = (t -,4t) ) , (3.18)

where

= a given fixed waveform observed

iudm_ A -iprocess ,-liriiFl,4dt-som6"ro ft t -.Vft

bandwidth of W cps

TIT4(t) = Ag(t-T) eJZPft = echo signal voltage (3.19)

in which A is a real constant amplitude factor, and T and +

are both assumed constant *

I the receiver front-end is gated open for a time duration T', then 1 8

This is a powerful, though inconsistent, classical radar assumption that has led to

many useful results. However, in the case of very large time-bandwidth products,
the assumption is inappropriate. 4 1 In that case, a more exact representation is
: j2Tr f (t - r (t))

n (t) = A (t T (t))= A (t- T (t))e t

where g(t) is the complex modulation and f is the carrier frequency. If, for example

0
!T (t) = To + t,

then jtJ t" 0 t -j2Tr fo t - jZTr fOT 0
i w(t) = A*(t(l - TO) e e e r

in which the Doppler shift may be recognized as 4 -f T = -Zf where r is radial
velocity and c is the speed of light. Also, for the very high Pinear velocities char-
acteristic of space pro4es, satellites and astronomical bodies, relativistic effects
may not be negligible.
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e," f0ov(t) dt

1 e f (t) (,÷ ct)dt (3.20)

a e 7 C 3.0"

where the latter result of proportionality is derived using the identity,

Jvlt) 2 = ((t)-n ,(t)1 2  ir(t)i -2Re ;(t)Tl, (t) + Iin, (t) (3.21)

Defining

T' 41,)= (t),n* ,(t) dt = A ; I(t) g*lt--r) ejntdt

-A [f' O (t)(t-T) e j2wt dt] e (3.22)

where ý(t) and g(t) are ,the'complex modulations, then

SIr' I1(, 11 cos lr f, -r +argr,,) (
py/T, ÷a e 0 . (3.23)

The exponent reveals high-frequency fluctuations with respect to the T variable.

These are r-f phase effects which may be averaged out over one r-f cycle by defining

an area-preserving smoothed version of p(;/T, ,) given by

T +

o

7*! .7 1 r j(T, I COS(27rfT +arg r (T,)
f 0 e0 dT

A where Io(x) is the modified Bessel funcvzon of first kind and zero order.

Since the function Io(x) is a monotonic function of x, the most probable estimates

of r and • may be obtained by determining those values which maximize
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Af A()Ag* (f-)eZTrf df
-OD 

3 
Ob

where t (fM and (f) are the Fourier transfoi.ns of r,(t) and g(f), respectively. This
complex correlation process constitutes a linear operation on the received noisy echo

;(t), followed by a linear envelope detection. The surface jr' (T, 4))I will be called

the correlation surface and its typical appeare 'ce is as illustrated in Fig. 3. 5. The
Amaximum-likelil ood estimates are T and 4). The range and Doppler resolutions are

the widths of the correlation surface in the T and 4, directions, which are in the order

of 1/B seconds and 1/P cps, respectively, where B cps is the signal bandwidth and P

seconds is the signal duration. These resolutions are readily deduced from Eqs.

(3. 25a) and (3. 25b). That is, Eq. (3. 25a) indicates that the correlation operation on I
S(t) consists of a mulLiplication by a function g (t - -r), which is time -truncated to P

seconds, followed by a Fourier transform to the 4 domain. The surface width in the
4) domain is therefore approximately 1/P -- s. In the other hand, Eq. (3. 25b) shows

that the correlation operation can be viewed as a multiplication in the frequency domain
followed by an inverse Fourier transform to the T domain. The frequency width of

g(f) which is also the frequency width of the matched filter) is equal to B cps, and
therefore the width of the correlation surface in the T domain is in the order of 1/ B

seconds.

The two-dimensional matched-filter process is summarized with reference to
Fig. 3. 6. It is assumed that the "front end" receiver characteristic passes a wide

band of frequenc-es W1 for a time duration T1 , the latter being taken up to a maximum

of the pulsc repetition period (or unambiguous range interval). The echo signal's energy

arrives in the rectangle of area PB. The two-dimensional matched filter character-

istic is shown to the right and it basically constitute? a time-frequency gate which
overlaps the signal' s energy area. The effect of tk -. matched filter is to "involute"

the signal' s input energy area PB by compressing it into an essentially interior rec-
tangle of area 1/PB.* If PB = 1, there is no compression. The rectangle of area TW

represents a surveillance area within which we look for targets. This surveillance

area should be no larger than necessary because the number of independent noise modes

In the special ambiguous case of high interdependence between T and 4) information,
as with a linear-FM modulation, the compressed area is elongated as shown by the
dotted ellipse.

we..
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increases with the surveillance area and compels a higher amplitude-threshold setting

for a given overall false-alarm probability, which implies, of course, a lower detec-

tion probability for a given signal-to-noise ratio.

3.2. 2. 1. 2 Nonlinear Detection

The two-dimensional compression can be increased b. Lg a nonlinear

envelope detector having the characteristic of I (x), the modified Bessel function. In

particular, we generate a voltage

(3.26)

which is proportional to the exact smoothed a posteriori probability density function,

as seen from Eq. (3. 24). It is known that the standard deviation of the a posteriori
!: density function .isl7' 18

ar = (3. 27)

in the T domain and

1=- (3. 28)

in the • domain, where

ZE 2 x received signal energy (3.29)
1. = • = noise power spectral density

( )f Z)ff0o? df
f df = [normalized signal bandwidth)2 (3.30)

Sf 00 1(f) 12 df

2- CO 21A 2
i (2•)2f cot2 g(t) i2dt

00 (normalized signal duration) . 31)

f I A(t) 2 dt

1 The standard deviations expressed by Eqs. (3. 27) and (3. 28) may therefore be imme-

diately used as an approximate measure of the resolution capabilities inherent in the

Bessel-functioi, detector of Eq. (3. 26). In terms of a practical example, and a more

standard resolution definition, it is observed that the 3-db width of a Gaussian distri-

bution (from which a and a are derived under high SNER conditions) is about 1. 6
TC
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times the standard deviation. Thus, the 3-db resolutions become

1.6

1.6 (3.33)

477
in general, for p >> 1. Furthermore, if the signal is truncated in a rectangular (chirp)

characteristic, s ay

Iy(t)I - rect (-T) and Ig(f)I= rect(1--•) 0 (3.34)

then

= P 1. .811Pand-[ =.I. B = l.81B , (3.35)

and the resolutions are

0. 9
0.9 (3.36)

B4p-

0. 90.9 (3.37)

PrP

Eq. (3, 26) may be written in a more convenient form as

, -° (p (r 1 ) ) (3.38)

where• Ir,,÷)I --T -• r(, (T. (3.39)

The peak value of I r(T 4) is approximately unity under conditions of high SNER

since then (neglecting noise)
i .27r~ot

f (t =Ao g(t -To') e (3.40)

where

T = true value of range delay

S= true value of Doppler shift

A° = true amplitude factor,

and therefore, from Eq. (3. 25a),

W'
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I'(To1 ,0 )I = r''(v,•)fa= A 2 f k(t-TO) 2 dt= ZE . (3.41)max -00

Using Eq. (3. 38), the Bessel function envelope detector is seen to operate as
shown in Fig. 3.7. The improvement in resolution resulting frdm such a det-.ctor

characteristic is illustrated in Section 6. 2. 1. It may be noted that the Bessel-function'

detector does not alter the detection probability, although low-level response regions

(such as sidelobes) are suppressed for the low-noise case. The detection and false-

alarm probabilities may be established in the linear-envelope domain and these prob-

abilities are merely transformed, along with the amplitude-detection threshold, by

the nonlinear detection characteristic.

3.2. 2. 2 Doppler-Channel Implementation

Prior to envelope detection, it is necessary to implement the correla-

tion surface r l (,r, 4,) j, which can be accomplished with linear systems. Two alterna-

tive approaches to this implementation are to use: 4 4 4 5 (a) Doppler channels, or

(b) range channels, In this section, we shall deal with the Doppler-channel viewpoint

in which i, In Eq. (3. 2 5a) is quantized as 4,i. Now,
00 . -j21r 'Ai

Re 17 (,ri)= A f Re[r(tl g'(t-T) e " dt

Sco -j2Tr dýit

= A f 1(t) e Re g(t- ) dt (3.42)

The latter form is readily seen to be equal to the previous form by expanding the pro-

duct of the real (cosine) parts in terms of the cosine of the difference-arguments and

the cosine of the sum-arguments. The integration of the ternm involving the cosine of

the sum-arguments is zero since that term contains fluctuations at r-f frequenc es.

The latter form in Eq. (3.42) can be implemented by frequency-shifting the

received signal ý(t) downward by 4, cps (or passing the received signal through a

filter shifted upward by cji cps from the zero-Doppler filter), and then applying the

signal to a matched filter with impulse response

h(t) = Re (P - t) , (3.43)

where P is the signal duration. By the convolution integral, the filter output is

00 0o o-j 2 i r4it'
y(t,,i)= f x(t')h(t-t')dt' f Re[ý(ti )e ]Re •(P-t+t? )dt'

= Re F' (t - P,) . (3.44)



34

15
10 (~lx)• .eX(for x>>I)

10

H

gg
-5/

1  1 2 3 4 5 x

*EXCURSION OF x(t)
S~XM:p

X= p r' (r, o)I
O:S x 5 p APPROXIMATELY

Fig. 3.7 Operating Characteristic of Bessel-Function
Envelope Detector I

tI

tii



I
35

The real-time axis at the filter output is therefore the T axis, and rI' (T,4)j is the

output signal envelope (see Appendix A).

Each value of ýi represents a separate Doppler channel and the Doppler-channel

putpu. signal envelope traces out a cross section of the correlation surface at 41 = ýi
In order to obtain complete coverage within a surveillance window of area TW in the

T - ý plane, a number of contiguous Doppler channels are required. They should be1
spaced by approximately Aý = I cps, which is the linear Doppler resolution of the
system. Division of the surveillance area into Doppler channels is depicted in Fig.

3.8 (a).

At the outra.t of each Doppler channel, the signal is compressed into the time-
width of one noise mode, by reasoning similar to that employed in Section 3. 2. 1.

Therefore, Eqs. (3. 12) and (3.13) hold in each channel. The information in each chan-

nel is

I(e) ln TB (3.45)T

where
T = range-delay surveillance window

B = signal bandwidth,

and, in order to obtain this information, it is necessary that

E > (e) . (3.46)
S~T

3. 2. 2. 3 Range-Channel Implementation

In the range-channel viewpoint, range delay is quantized by producing the

complex signal

X(t,Ti) = A (t) g*(t-Ti) (3.47)

the real part of which is the physical voltage. Tae signal X(t,,ri) can be generated by

heterodyning the received signal ,(t) by a delayed replica of the transmitted signal

(t ,, and passing only the difference-frequency signal. Then a spectrum analysis of
Re X(t, 'i) yields (see properties in Appendix A)

! - [Re X(t, I- I [Xt, Ti)

1i= Jr', i)j ; c÷ > 0 (3.48)

where denotes the Fourier-transform operation and @ is the frequency argument in

the transformed domain.
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(a) Doppler-Channel Implementation
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"(b' Range-Channel Implementation

Fig. 3.8 Division of Surveillance Area into Doppler Channels
or Range ChannelsiII
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Each value of ri represents a separate range channel and the spectrum analysis

at the rangc-channel output traces out a cross section of the correlation surface at

T = I i" In order to obtain complete coverage within a surveillance window of area

TW in the T -r, plane, a number of contiguous range channels must be used. They
I

should be separated by approximately AT = - seconds, which is the linear range-delay

resolution of the radar. Division of the surveillance area into range channels is de-

picted in Fig. 3. 8(a).

At the output of each range channel, the spectrum analysis has compressed the

frequency width of the signal response into the width of one noise mode, by reasoning
similar to that employed in Section 3. 1. 2. Eqs. (3.12) and (3.13) again obtain for each

range channel. The information in each channel is

I(e) = In PW (3.49)

where

W = Doppler surveillance window

P = signal duration,

and, in order to obtain this information, it is necessary that

E I(e) (3.50)

3. 2. 2.4 Overall Two-Dimensional Information

The overall two-dimensional processing may be viewed in terms of a

set of indeperndent radar channels with the established separation between channels

(linear system resolution) insuring that a signal response occurs only in a single channel.

(If the signal response were to substantially spill over into other channels, which tends

to occur with high T - 4 interdependence due to elongated ambiguity areas, the channel

sepazat n should be increased.) In the linear system, the total range-Doppler infor-

mation received (for a single target) is

SI~e)= InTWIn In TWPB (3.51)

~(e) +1(e)

: InTB +InPW = 1(e) +ie) (3.52)

regardless of whether range or Doppler channels are employed. The ra.ige and Doppler

informations are therefore seen to be additive and the total information can be calcu-

lated from the (logarithm of the) ratio of the surveillance area to the compressed

energy area, or simply by adding the intra-channel information to the information

implied by the localization of the signal response to a particular channel. Using the

tit

,%
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Doppler-channel implementation as an illustration, there are TB noise modes within

the range-delay surveillance window of T seconds in each channel and PW Doppler

channels are required to cover the Doppler surveillance window of W cps. There are

therefore TBPW independent opportunities for a false alarm, so the information of

Eq. (3. 5 1) is only obtained for

E >In TBPW (3. 53)

or
E (e) (3.54)

In the nonlinear system, the additional compression requires that the overall

T, information be written as

(N)IT (e) = In p TBPW (3.55a)

= In4-p TB + In4p'PW = (N)IT (e) + (N)I (e) (3. 55b)

If the reliability factor r is again introduced, the inequality in Eq. (3. 53) is written

as

ET = In r TBPW , (3.56)

in accordance with the previous development connected with Eqs. (3. 7) and (3.8). We

may write Eq. (3. 55a) as

(N)'T (e) = In p+ InTBPW , (3.57)

and Eq. (3.56)as

ET
I- n r + In TBPW . (3.58)

Eliminating the term In TBPW between Eqs. (3. 57) and (3. 58), we have

ET (N)I (e) + In r (3.59)

Subtracting Eq. (3. 59) from the identity

E E - p' (3.60)

where
E = true input energy,

-0
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we obtain E ET E (NJ(e) r (

k.7 = - , (361

In order to accept the presence of signal as such, we have the detection criterion

E - ET> 0 (3.62)

and lerrfoz-e, for detection,

E (N)I (e) > In (3.63)
kT,4

orOr p~re (E-_ (N)I (e) (3.64)

If we now define an information loss L by

-- ~~~ 4 *** 4* hi hh~~~~~~ *. 444, .4 .44.4.I~. ,A *(p). 4 . . *4 & * 4 44 *4 4 . ~4

where we postulate that

L> 0 (3.66)

by continuation of the proposition that the information does not exceed the input

entropy, then

> r eL (3.67)

For a perfectly efficient measurement we would have L = Z, which implies that

(N) I (e) _ E , (3.68)

and the detection criterion becomes

p > r (3.69)

or Ip > (3.70)
SI=~F A

The smallest that r can be for a meaningful measurement is r = 2. For this condition

of minimum reliability, the detection criterion becomes

-• I
iI
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E > (3.71)

Since the single noise waveform which enters the radar is passed to all of the
channels, the noise may be correlated among channels. It will now be shown that this

correlation, over the T-ý plane, is proportional to the ambiguity function I X(T, 0), 1. I

which in turn, is proportional to the noiseless correlation surface Ir (T, +)I. This

indicates: (1) that the two-dimensional matched filter essentially localizes the signal

response into the same area shape as a noise response, even in two dimensions, and

(2) that if the signal waveform design and channel spacing are such that the signal

response is predominantly restricted to a single channel, thenthe noiee between channels

is largely uncorrelated. The derivation for noise correlation using the Doppler-

channel model is as follows. Let -'(t) represent the complex envelope for a Gaussian

white-noise input. (Complex signal notation widl be employed and the symbol "• represents

a complex modulation. ) The -"itput from one (reference) Doppler channel is

S(t) -- f '(x)i (t-x.) dx (3.72)
: -00

~~ 411 tto e'h'i-4te itaVSAte' & m po~tamc-#Tk.& 41*tipt oi a~*" i *....

impulse response h'(t), is.

YT) = fi(y)i)' (t-y)dy (3.73)
-0O

The cross-correlatio:t oetween the t,,,o outputs is

S() () * (t-x) h (t+ -y) dx dy

f J J V (x) ; (x+p) h (t-x) h' (t+T-x-p) dp dx, (3. 74)

-00 -00

where we have transformned from the variable y to p by

y = x+ p; dy dp (3.751

Now letting
Sq = t- x; dq = -dx (3.76)

we obtain

.i4i

a



!

41 |

R (T) = f j -(x) (x+p) h*(q)-' (q+T -p)dpdq. (3.77)

We identify the correlation functions

R (T) = 7(t)? (t+T) (3.78)
V

for stationary noise • (t), and

Rhh'(Z) = f j *(q) h (q+z)dq (3.79)

Then c
R () = J RV(p)Rhh,(Tr-p)dp 

(3.80)

which is the convolution of RV (r) with RhhI (T). Now, for white noise,

R (T) = N0 6(T) , (3.81)

so that

-OCR4* (T)b~9 N4~ R h 16 *(**S3* I hP r4 -rrkp%&-

R o,)N Rhh.() -J O

In the Doppler-channel implementation, the only difference between the two channels

is a frequency d.fference * so that

-j Znr 0 t
h '(t) = h (t) e . (3.83)

Then Eq. (3. 82) becomes
00 -j 2Trr (q + T)

R (T) = NO0 R (T, = NO *(q) h(q+ T)e dq. (3.84)

For a matched-filter system

h(t) = • (P-t) (3.85)

so Oo• -j2w € (q+T)
R (T, €) = N £ • (P-q) " (P-q-T) e dq

S-j2Tr (Tr + P) PC j2i 6 xr
= e No J • (x)g (x-r)e dx (3.86)

S~-co
by using 

C

P -q = x (3.87)

[-,
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and

dx =- dq j *ý (3.88)

Then

IR ) I = N 0 1 (x) ý*(x-r)e dxi I NO I X (T. (3.89)
-00

which was to be shown.

In the preceding work, as well as in the former single-channel analyses, it has

consistently been seen that a matched filter compresses the signal energy into the

concentration occupied by a single noise mode. This property is optimum from the

standpoint of information processirg. For example, suppose that we consider the

compressed signal area to be fixed, and postulate that more than one noise mode occurs

within the signal area. (This results from a situation where the matched-filter time-

frequency gate is larger than the signal's input energy area. ) Then there would be

more independent opportunities for a false alarm within the surveillance area. The

amplitude threshold would therefore have to be raised, although the received infor-

mation (which depends only upon the compressed signal area and the surveillance area)

has remained constant. Cn the other hand, we cannot compress the signal area to less

' f " tlhtri~t~t df 1 #L~ titii& woad -impl) a t",%~ t4.r~
gate which is smaller than the signal's input energy area. This situation tends to i.

expand the compressed signal as well as the output noise modes. During such ex-

pansion, the signal tends to remain concentrated within the region of one noise mode,

but information is decreasing because of the output signal expansion relative to tle

fixed size of the surveillance window. In summary, from the standpoint of information

efficiency, the optimum Miltering process is accomplished by the smallest time-

frequency gate which encompasses the signal's input energy area without substantially

rejecting signal energy. This is also the basic characteristic of the matched filter,

which is krown to be optimally suited for detection and parameter estimation.

3.3 Relation of Results to Statistical Mechanics

3. 3. 1 Distributional Information Defined in Terms o.f Physical Entropy

In the preceding s-ctions, we dealt with various radar problems and determined

equalities and inequalities between the parameter information, expressed in natural

units, and the SNER required to obtain it. By a simple change of units, these relations

were seen to be equivalent to relations between physical entropy and information in

thermodynamic units. The associations were such as to suggest an equivalence between

physical ertropy and information, of the type specifically stated in Eq. (3. 68). In

this secticn, we shall be able to acquire further corroboration of such an equivalence

F.

•I J
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by starting with a the:'modynamic problem and deriving similar results.

Consider a long thin thermally insulated container filled with an ideal

monatornic gas, as shown in Fig. 3. 9. We assume chat a stationary external energy

source is located somewhere along the x-axis within the region

0 <x < X 1 (3.90)

and its location x0 is to be determined. The source injects a moderate quantity of

heat energy t in such a manner that it fills a subvolume equal to I/q times the total

volume. 1. e., the input energy is concentrated in an interval

'x = X (3.91)q

where

l<q<Q , (3.92)

with Q representing a limit on how much concentration can be phyRically achieved. A
subvolume width Ax centered at x = x' will be called subvolume (or section) V (x') .

Intuitively, it would be said that, if q = 1, no information is received and if q = Q, the

maximum information is obtained.
46,47

.. - - , , ,44 . 64 Tbe4 iiatrodict.loaof.i ik.Q•e,44rvowr 4A*,egwrgy Ere.ultseinr* eltMory~incrga~e ,
of

+q7+ qA 2 (w/q)d.
S f dE Cvs' fo T 7 ."7

.0 0

Cvw (3.93)
In (1 + qA

q 7o

where

q A = temperature rise in subvolume V(x
0

w/q a weight of gas in subvolume V(x 0 )

Cv = specific heat at constant volume.

If no information were obtained, then q = 1 and the entropy will be denoted by the un-

primed value

AS= S C w In (1+ A ) (3. 94a)P vgo

C w A? E A7
t v for -T-- << 1 (3.94b)

20 go 0
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and it should be observed that

AS' < S for q > 1. (3.95)

The quantity S will be referred to as the entropy-equivalent of the input energy, or
p

simply the input entropy.

We note, now, that a greater amount of received information (higher q) implies

a smaller entropy rise AS'. Since entropy represents unavailability of work, it is

immediately concluded that more input information implies a greater availability.of
work. This result is completely compatible with the described gas model. For ex-
ample, if the input energy is introduced uniformly throughout the total volume, no

information is received and the thermal-equilibrium state of the system is not disturbed

so that there can be no further thermal work performed due to mixing or diffusion.

On the other hand, the more the fixed quantity of energy E is concentrated as it enters

the container, the higher the local temperature rise in subvolume V(x ) and the more

thermal work we can expect to recoup. In fact, it is proved in Appendix B that if the

added heat is subsequently allowed to mix with the remainder of the volume, then the

entropy increases by an arnount
N = S - AS' (3.96)

a.,the ret-eiveA infq~rrnatiop in con... e. . We shail associete N with information,~~~~~ . .. , - _u~h r.eie .norntoi cocrrnl *os 4

and it will be called negentropy. For a specific quantity of input energy, 'here then

exists a principle of conservation of information and entropy such that

E (
S = AS' + N = - (3.97)

E
To review, for a given energy E there exists an entropy-equivalent S

assuming AW << Wo. When E is introduced into suovolume V(xo), the increase in
0 0

system entropy is 6S'. We also state that a further quantity N is received, which is a

distributional form of entropy identified with positional information, and which is ex-

changed for a further increase in entropy as the added energy E diffuses throughout

the volume (and information is lost). It is an interesting characteristic of this type of

information that a greater input information implies a greater amount of available

thermal work. In this sense, the information tak, s on the attribute of a physical

entity rather than only an arbitrary measure, which is a fundamental conclusion of a

cybernetic nature.

Although the negentropy N has t'- s far been associated with a measure of

information, we have not yet related N co the type of info-mation discussed in the

radar applicatioi., This relation will now be clarified. From Eqs. (3. 96), (3. 93) and

(3. 94a), we have

ti
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NIC wln(l+ 619w v In (1 + q a ) (3.98)v go q 7 o

From the theory of statistical mechanics, 48-51 it is known that

kn

Cvw = -'-- =km (3.99)

where

k = Boltzmann's constant

n = total number of degrees of freedom in overall volume

m - total number of modes, assuming two degrees of freedom per mode.

Thus,

N =k In (+ ° m'I. )n , (3. 100)

where

m= - number of modes in subvolume V(x). (3. 101)
q

But, fro~a Eq. (3.94b) and Eq. (3.99),

___ E SNER p (3.102)

where

SNER= • = p' (3.103)

Thus,
N = k In m - m' In (1 + (3.104)m (

This formula for negentropy bears a remarkable similarity to Shannon's formula for

the information capacity of a noisy communication channel, which will be further dis-

cussed in the subsequent section. We note here, however, that N approaches zero as

p' approaches zero. Also, if ml is very small compared to m so that the second term

is negligible (greatt st received information), and if m is very large, then

N~k p' , (3.105)

which shows that the greatest received information is characterized by

N -• SNER z E (3. 106)
k.7 0

Comparison of this result with Eq. (3. 68) or Eq. (3. 54) shows that we should identify

N with information in thermodynamic units or N/k'with information iii natural units.

k[
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3. 3. 2 Comparison with Shannon's Formula for the Information Capacity
of a Noisy Channel

From Eq. (3. 104), it is seen that the distributional information N = N(e)

(in natural units) is measured by a change in the quantity

N(e)(m) = m In (1+ -L-) 9 (3.107)m

for a fixed value of p'. That is,

N(e) = N(e)(m) - N(e)(m' (3.108)

We associate N(e)(m) with an a priori value of information entropy, and N (e)(m ) with

an a posteriori value of information entropy, the difference being information.

For coxmparison, consider Shannon's formula 2 4 ' 52 for the information capacity

of a noisy channel:

R(e) = B 1'- (1+ SN) nits/sec, (3. 109)

where

Bc = channel bandwidthc

S/N = signal-to-noise power ratio per transmitted pulse.

In a time duration T, the amount of amplitude information communicated is

I(e) = R(e) T = TB In (1 + S/N) natural units. (3. 110)
C

Now let us assume -hat a sequence of sinusoidal pulses, each of duration P, is be•ng

transmitted, and they are received by a matched filter naving a bandwidth of B = 1/P,

as in Eq. (1.5). Then, from Eq. (1.6),

SIN =SNPR=E (3. 111)N0

where

E' = energy of a single pulse

N = k2 = noise power spectral density.

Across the channel bandwidth Bc' we can fit a parallel group of

-- = PB pulses (3.112)
"B c

and, in a time T, there are T/P such pulse groups giving a total of
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PB TB pulses . (3.113)

(Alternatively, wa could have transmitted pulses of bandwidth B and wouid have alsoc

ended up with TBc pulses for matched-filter reception.) Therefore, Eq. (3. 111) can

be written as

STN E W.2= - , (3.114)
T/ ck TBSc c

where

E = total energy of the signal.

Finally, substitution of Eq. (3. 114) into Eq. (3. 110) yields,

1(e) = mln (1+ .' ) = I(e)(m) (3.115)
m

where

m = TBc = number of noise modes in the time-bandwidth area occupied by

the message.

For a fixed balue of p.' (i. e., fixed total energy), the information I(e) is a function of

on'y the number of modes m. Distribitional information, as expressed by Eq. (3. 108),

is therefore seen to be the difference between N(e)(m) for the a priori surveillance
(e)region and N ((m' ) after reception. In a matched-filter radar, ml = 1 so that

N(e) = rn In (+-L ) - In (1 + p') (e) _ Hb(e) (3.116)
m a b(316

Thus, after the measurement, we are still left with an a posteriori uncertainity

(entropy) given by

Hb(e) = In (l+p') . (3.117)

Now, Eq. (3. 115) indicates that this is the information that can still be extracted from

the matched-filter output (for a signal immersed in one noise mode). In fact, this is
infomatin aout he sgna. Ths H(e)

the amplitude information about the signal. Thus Hae, the-a priori entropy, is the
surn of a distributional information term N (e) and an amplitude information term Hb(e)

The generality and applicability of physical-entropy and information-entropy

concepts to both thermodynamic problems and electrical problems stems from the

use of universal properties such as energy, temperature and degrees of freedom. In

"fact, the Boltzmann factor has been shown to be completely applicable to a hybrid

system such as a mechanical (leaf-spring) resonator immersed in a container of gas.

"The spring is characterized by amplitude and phase properties and comprises

two degrees of freedom as a harmonic oscillator.

iA
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3. 3. 3 A Signal-Detection Criterion Relating Input Physical Entropy to

"Absolute" Information Entropy of Noise Background

It is assumed, here, that the signal is immersed in one noise mode, as

at the output of a matched filter. From an equation such as Eq. (3. 2), we have

P F - I - (I - P , A - P , ' .• s
FA FA FA

Substituting Eqs. (3. 5) and (3. 6), it is seen that

T = In r . (3.119)

The minimum useful value of r is 2 and therefore the threshold of detectability, by

this criterion, is given by

E T
= In 2 = 0.74 . (3.120)

With a slight increase in reliability to r e, we shall (reasonably) define the detecti-

bility by the criterion
E T

T = ne = . (3.121)

Now the energy of the noise mode is characterized by the normalized Boltzmann

factor of Eq. (2. 16). If the energy levels were quantized to a fine interval 6E, the

information entropy would be approximately 5 2 ',17

00

N = p(E) ln[p(E) 6E] dE (3.122~a)

=I +In k - In6E , (3. 122b)

by substitution of Eq. (2. 16). By using the natural quantization

6E = OE = k , (3. 123)

Eq. (3. 122b) reduces to

H(e) = 1 natural unit . (3.124)
N

Therefore, from Eqs. (3. 121) and (3. 124), the signal detectability threshold is given by

ET (3.125)

where H will be referred to as the NabsoluteR information entropy of the noise mode.
NI I

t'
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The thermodynamic equivalent to Eq. (3. 125) is

E TT = (H4 ,t (3.126)

where ET/ 7 is the physical entropy increase due to signal and (HN)t is the absolute

information entropy in thermodynamic units:

(HN)t = k HN(e) . (3.127)

In order to interpret the results, it should be recalled that information entropy is funda-

mentally defined5Z as a generalization of

H(e) = lnP = InN , (3.128)

where N = 1/P is a number of alternative equally-likely states. Therefore (HN)

represents the average value of the logarithm of the number of distinguishable noise

amplitudes (subject to quantization 6E = cE ). Eq. (3. 128) states that the physical en-

tropy increase from the s;ral must exceed the value (HN) in ore-r to be detected.

This is consistent with a well known result of statistical mechanics which relates the

thermodynamic entropy to the logarithm of the number of system stateL or 'complex-

ions" . That is, assume that a system is in a condition such that nI degrees of freedom
are in energy level El, n2 degrees of freedom are i- energy level E..., nM degrees

of freedom are in energy level EM. The number of ways in which this can occur is

F nt (3.129)

as given by Eq. (2.8), where n is the total number of degrees of freedom. Let us add
a small quantity of energy E such that one degree of freedom in level Ei jumps to a

higher levt• E., with

E = E. -E . (3.130)

Then the number of ways that the new situation can occur is

F 2 = nIM... ( h .. (nl +l)!...nM. (3.131)

Now

F 2  ni ni
7 - j + n Jfor n. >>l (3.132)

The system is in thermal equilibrium before and after th- introduction of the energy E

so the Boltzmann factor of Eq. (2. IZ) applies. That is,

A
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p(E) i -- a e ; S = #, ,...,i...,j,..., M (3.133)

Therefore Eq. (3. 132) becomes

E.-E.
F j 1 Ez e ek 1  

(3. 134)

and so

E• n F2 in F n F. (3.135)

Thus, physical entropy is inherently related to the logarithm of the number of alterna-
tive states by virtue of the applicability of the exponential Boltzmann factor. The de-

"tectability criterion of Eq. (3. 125) therefore is predicated upon the minimum energy

that must be added to overcome the degree of randomness in the noise, as measured by

the quantityaE I .7.

%Ii-E
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4. OPTIMIZATION OF AMPLITUDE THRESHOLD LEVEL

4. 1 Motivation for Amplitude-Threshold Optimization

In the previous radar discussions dealing with the nonlinear Bessel-function

detector, when the input SNER was equal to the information as expres,-.ed by Eq. (3. 68),

the reliability factor r was equal to two times the SNER, for a barely detectible signal,

as indicated in Eq. (3. 69). Now, from Eqs. (3. 97) and (3.116) we may write

E N(e) +In (l+ p t ) , (4.1)

where

N(e) = distributional information obtained

AS' = ln(l + pt) = amplitude entropy (not yet extracted after

I o. wpulse compression).

If we associate Eq. (4.1) with the radar receiver employing the linear detector,

then

777 - lnr TBPW = ln TBPW +lnr

SI(e) + ln(1 + p,) (4.2)

where
I(e) = In TBPW = distributional information of linear system (4. 3 a)

r = l~p t = 1 +SNER . (4.3b)

Thus, with the nonlinear detector, all of the entropy increase appears in the form of

distributional information for the maximum reliability (to allow detection) of

r = p = Zpt (4.4)

whereas, with the linear detector, the entropy increase may be interpreted as equiva-

lent to the sum of distributional information plus amplitude information, with a

measurement reliability ofr = 1 + P . In both cases pt > 1 implies r > 2, as is re-

quired for a meaningful measurement. It is iatuitively consistent that no amplitude

information is conveyed with the nonlinear detector because Eq. (3. 38) shows that it

is necessary to know p before we can implement the nonlinear detector and therefore no

"amplitude information should be exp.ected.

With either the linear or nonlinear detector, the reliability r increases with

SNER = ps , as expressed by Eqs. (4. 3b) and (4.4). This implies an increase in

threshold value by virtue of Eq. (3. 56), which is
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÷~ET E In rTBPW (4.5)

The conclusion that the thresho.ld level is an increasing function of SNER, in

order for the equivalence of physical entropy and information to hold, raises the ques-

tion of possible optimization of the amplitude threshold for a given SNER. It is shown

in this chapter that such an optimum level exists and can be usefully employed in an

efficient radar detection procedure. It may also be observed, at this point, that the

information InTBPW, defined for the linear detector, does not increase with SNER.

This may appear inconsistent from the viewpoint that the measurement accuracy in-

creases with SNER as indicated by Eqs. (3. 27) and (3. 28), although the resolution does

not. However, we are restricting our definition of positional information to a "bound"

form in which a physical compression of energy is actually involved. From this stand-

N point, the nonlinear Bessel function detector allows the information to increase as

In p TBPW while the linear detector causes the information to remain constant with in-

creasing SNER.

4. 2 Detection Model

It ;s first assumed that the input signal-to-noise ratio is known, although a later

extension of the results will show that the analysis can be employed for a given range

of possible values of signal-to-noise ratio. In this procedure, we adopt the model of a

binary input me ssage x. which has two equally likely states:

x = 0 target absent

x = 1 target present.

At the output of a $black boxw , which includes a voltage-amplitude threshold test,

we obtain a binary result y.:
o

Y= 0 target judged absent

=1 target judged present.

The model is depicted in Fig. 4. 1.

A detection information IM may be defined as

I(Z) =H(2) a- (2) (4.6)

where

HaZ _- ( i) p(xi) logZ p(xi) = a priori entropy (4.7)

1 1
b -P(xiy) log2 D(xi/Yj) a posteriori entropy. (4.8)

b= o 0 0 y
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xo0 TARGET IS NOT PRESENT yo=TARGET JUDGED NOT PRESENT

X =TARGET IS PRESENT y1: TARGET JUDGED PRESENT

2Fig. 4.1 Detection Model
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The a priori entropy H is a constant independent of amplitude-threshold level. The

"maximization of information with .:ect to threshold level is therefore seen to be

accomplished by tho minimizati,:., jý.he a posteriori entropy, wh",:h we may write as
I1 1

0(Z P (X(~)lg 2 PXiY) (4.9)i•" H2)= Z P(j)[b P(Xi(yj) log? P(Xi/yj)] '9
•0 =O =O

Minimization of H(Z) is equivalent to minimization of the
b

S= - p(xi /yj) log? plx./y.) ; j = 0,1 (4.10)
1 30

averaged over the p(yj). Finally, minimization of the Q. is accomplished by producing

the greatest disparity between p(x/yj) and p(xl/yj), for j = 0 or j = 1 (since Q. is

itself an entropy form for two states, with maximum entropy being characterized by

"equal probabilities 5 2 ). That is, given yj, we have maximized the likelihood of distin-

guishing whether a target is absent (x0 ) or present (xl), where these two possibilities

were equally likely before the threshold test.

Hb can be written in terms of the joint probabilities as

(01 PXi, yj) (4.11)
•H) i= 0 J= 0- P(Xo0 Yj) t PNX11 Yj)

where the joint probabilities are given by

pxi, yj) = P(xi) P(Yj/xi) p(yyj/x i ) (4.12)

for

P(X0 ) = X = 1 (4.13)

The conditional probabilities p(y./x.) may be recognized in more familiar terms as

p(yl/xo) = PFA = false-alarm probability (4.14a)

P(yl/xl) = PD = detection probability (4. 14b)

P(yo/Xo) = PCD = "PF = correct-dismis sal probability (4. 14c)

P(yo/Xl) = PM = 'PD= rnissed-signal probability . (4.14d)

Using Eqs. (4. 7), (4. 11), (4. IZ) and (4. 14), we can now write Eq. (4. 6) in the form

PM PD~(Z½ D FA lg F

+ Plog - P CD lg P P CD1 (4.15)
logZP + _ +

M CD M C
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which can be minimized with respect to amplitude threshold level. Typical plots of

I vs. threshold level are presented in Section 6.2. 2, Fig. 6. 5. The curves become

higher and broader with increasing signal-to-noise ratio. For a given input signal-to-

noise ratio, it can be seen that there is an optimum threshold level which maximizes

the detection information. In the example cited in Section 6. 2. 2, it can be seen that

the optimum ratio of threshold voltage to rms noise, x = T is not a sensitiveST • T

function of signal-to-noise ratio. As a general rule, however, if we may reasonably

assume, a priori, a range of possible signal-to-noise ratios, then the amplitude

threshold can be set at some average value such as

f T (2m(S/N) xT(S/N) d(S/N)

D max

"" T =, (4. 16)
f 1 (') (SIN) d(S/N)

S~D max

where

I(z) (S/N) peak value of I()' for a specified signal-to-noise ratio S/N
D max

and the integrations are performed over the a priori expected range of S/N values.
On the other hand, a radar c signer may wish to sacrifice some information at the

higher S/N valbes and increase the information for the lower S/N values. Inspection

of curves of the type illustrated in Fig. 6. 5 will then allow a well-compromised selec-

tion of threshold level.

4.3 A Detection Procedure Based Upon Threshold-Crossing Rate

After one chooses the optimum amplitude threshold in accordance with the cri-

terion described in the previous section, a specific false alarm rate is obtained which

must be accepted as normal. This rate may be empirically determined as accurately

as desired by Observation over a long period of time while the radar is in standby opera-

tion barring, of course, variations in equiv:zlent noise temperature due to antenna point-

ing angle, etc. Detection must now be based upon an increase in threshold-,- -ssing

rate resulting from the presence of signal.

A detection procedure is postulated in which an output "indicator" pulse is

generated if there are one or more amplitude-threshold crossings per radar pulse.

Within some observation interval T , which includes many transmitted pulses, we

observe the rate at which the indicator pulses occur. If noise alone is present, the

probability of exactly k indicator pulses occurring in time T is, by the binomial dis-

tribution,

[

K F

a.{
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where

Po PFA per transmitted pulse s n PFA' where n is the number

of noise modes per transmitted pulse in the surveillance

region and lnA is the probability of a single noise mode

crossing the threshold

= fr T = number of transmitted pulses in time T at a pulse

repetition frequency of fr

Using the normal approximation that

P(k) N CH p0  np(1 - p0 ) (4.18)

for
5 2

np 0 (1 - po) > 3 , (4.19)

and writing the indicator pulse rate as

r = - (4.20)

it is seen that the probability density function for rate with noise alone is approximately

f ~ p (l- PO)\
P 0 (r) = N PO (4.21)

When signal is present, the indicator pulse rate increases and essentially (for n >> 1)

becomes equal to (a) the false alarm rate and (b) the rate with signal present but no

false alazms included. This new rate has the distribution of the sum of two independ-

ent normal vaziables and is therefore

fr P0 (1- PO) fr ( - P (4.22)

T T

where

P= per transmitted pulse.

The two rate density functions (signal absent and signal present) are illustrated in

Fig. 4. 2.

A threshold rate rT may now be set using the Neyman-Pearson procedure in the

rate domain. An overall false alarm probability PFA is selected for a specified obser-

vation interval T~. Since the standard deviations of the density functions Po (r) and Pl(r)become narrower with increasing T , the rate threshold rT decreases with increasing
foa fixed overall PFA * With a given signe-to-noise ratio, then, the overall

detection probability P will increase with T . The detection-information procedure

DA
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is illustrated numerically in Section 6. 2. 2, using the actual parameters of an advanced

pulse compression radar. It was found to be substantially more efficient than the con-

ventional approach in which the Neyman-Pearson procedure is applied in the amplitude

domain. Some reflection on the nature of the difference between the two approaches

will indicate how the improvement occurs. In the detection-information procedure,

we have disassociated the overall false alarm and detection probabilities from the am-

plitude threshold setting which is optimally set by an independent criterion. It is

readily seen that, under conditions of long observation time T and low overall false

alarm probability PFA P the normal Neyman-Pearson procedure applied to amplitude

may require ampliude thresholds which are so high as to be completely unsuited for

low-level signal detection, whereas the detection-information procedure always chooses

a well-compromised threshold.
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.5 PARAMETER INFORMATION

5.1 Basic Formula

In the previous chapters, particularly Chapter 3, the strict applicability of the

t concepts of information theory to radar was developed by utilizing well known results

on the size of the compressed signal responses, as illustrated, for example, by

Fig. 3. 5 with the linear detector and Eqs. (3. 32) and (3. 33) for the Bessel-function

detector. The basic framework developed previously can be generalized to include

multiple targets with unknown echo amplitudes, range delays and Doppler shifts. The

generalized results not only support the previous conclusions, but they lead to a con-

sideration of information areas in the r - d plane as well as the delinition of an inter-

dependence coefficient between range and Doppler informations. In this section, we

derive the basic formula for parameter information in a multiple-target environment.

The following sections are devoted to simplifications and interpretations of the basic
formula. We sht 11 use the analytical model and complex notation employed in Fig. 3. 4.

Let it be assumed that there are N targets, and let

6 2 (T'Z ' ' I s ý ( 1, 1 A ,; T 2~ , + .AZ;. .. T ON, O AN)(51
be a vector (3N-tuple) representing the range, Doppler and amplitude parameters of

the N targets. If the transmitted signal is g(t), then the complex echo voltage is

where j2i" rot
•X oi(t) =A oi (t - Toi) e ol(5.3)

in which the zero subscript represents a true value.

y = nt)=• o~t) + A~t) ,(5.4)

represents the received noisy signal, where v(t) is noise, then, by the Bayes equality,

we have

p~y= . (5.5)

The average pifameter information is therefore

(X, f f P(X)y)n dxdy = f f p(x'y)lnPIpty) dxdy . (5.6)

00 OD
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Substituting,

p(x, y) p(x) p(y/x) (5.7)

and

P(Y) = f p(x) p(y/x) dx , (5.8)

the information becomes

SI (e)I(X, y) = 00 ODlx dx fIn co
pe ODY p~x dx [ pC/x 1 yxn c dy (59

-- Lf p(x' )p(y/x' )dx'

-00

which is entirely in terms of the a priori density function p(x) and the likelihood func-

tion p(y/x). In the analytical work dealing with information, it is most desirable to
investigate the change in information as a consequence of changes in the target con-
figuration and changes in radar waveform. In order to allow for the former considera-
tion, the averaging with respect to p(x) in Eq. (5. 9) may be omitted and the formula
become s

(!el (x# Y) =f pl(Y/x) in po •Y3)- y(.0

S-c f p(x' )p(y/x') dx'

In terms of the complex radar notation, we have

S~~ply/x) = p (vt) P-•l )- lt)= p (vlt) = y - nxlt))

S•= p lvxy ylt)- (lt) - Tx~t))_- Plvx y) (5.11)

where, (from Eq. (3. 20)1 Od"• f~oJVx y(t) '-dt

P(Vx = Y T'W e (5.12)
(Znk2W,)

with

IV, (t)12 = J1 (t) - 1xltli2 = Ir(t)Iz - 2 Re •(t) -(t) + j ix(t) 17% (5.13)

Thus, Eq. (5.10) becomea

'"xV)f p~v liii

For,,y th P0~ dy . (5.14)

CDp(xf P(V y, dx' , (5.15)

• +

. . . . . •'- .. . .. > c - • - •t ±
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x' is an arbitrary variable of integration and we have

Vxt,Iy= V X1y(t) M X(t - Wxtt

= x, y(t) + n x(t) - x, (t) (5.16)

where x is a given set of parameters throughout the probiem and all averaging is being

done over the ensemble of all possible received waveforms y = ý(t) as determined

from the multidimensional Gaussian process v(t) added to the givea r x(t) . Substituting
Eq. (5. 16) into Eq. (5. 14) yields

( 2) Ar Pv ) 1 O (5.17)

"f p(x )p(vxy + x -q xt )dx' :

First consider

1 -I M +y(t)+l x(tP)" T (t)I 2

P(VXY + Tx -' W) ' e dt

* (5.18)

where

+I Vx, yt + I x(t) - 'lxn (t) I = (SVxy x,(5.19)
SI V t 2 + 2 Re'x M (q x(t) - 'n 1 M + I[x(t) -n x'(t) 12

I.

For wide-band signals, the center cross-correlation term involves a cosine function

of a wide-band phase-modulation argument as well as a uniformly-distributed phase

due to wide-band noise. After integration with respect to time, this contributes a

negligible value to the total exponent in Eq. (5.18). Thus
1 -c ( x 9 y Mt 1 2+ Pl)' x , (t)I12 dt

P(Vx, y+nx-1nx,)t (27rkw)T' WT A e

--•Ic OD1 1 (t) -n,(t) I dt (5.20)

P(Vx, y e

and the integration with respect to x' in Eq. (5.17) becomes

1 2~
fp.t )(Vxy x P ~ - •- Irnx(t)-lxj(t)I dt

+jj X-T, x, )dx' p~ )f p(x' )e dx'. (5. 21)

A X ot -

OD ,
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Substituting this into Eq. (5.17) yields

110I(e) fPOD l~fx

p(x, Y) =(x - )enI 00 Ax dx' dy

00
- 1 0 - 0p(x0) e dx

Now,

-If = (([ ,n1 xj~dt! 2 Ren*t-x(t) + [yx' (t} j Z dt
-0 00 onlt'x't xzdt 12 o

= E +E' -Re Xxx (5.23)

where

E -. f rn x(t) 12 dt total echo signal energy (5. 24)
-00

El 1 I x, (t) 2 dt = total echo signal energy as a
2 -00 function of dummy variable xt  (5.25)

0X0 (t) • xt (t)dt = multiple-target echo
X. ambiguity function (5. 26)

Using the above notation, Eq. (5. 22) can be expressed in the form
E' +E 1

00o0 -I?- -kT Re Xx, x
I(e) (X, y) = lnf e e p(xt) dxt (5.27)

which is a general formula for parameter information that depends only upon

(1) The assumed target situation x

(2) the ratio of total echo signal energy to noise energy per mode

(3) the multiple-target echo-signal ambiguity function X, x

(4) the a prior density function p(x').

5.2 Reduced Single-Target Formula
In order to acquire further insight into Eq. (5. 27) and develop it into a more use-

ful form, the single-target problem will be considered in further detail. Thus the echo

signal Is of theform

rX~t A g(t T) e j2 ýt (5.28)

fg

A.
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where the transmitted signal is

S(t) = R(t) ej2uG(t) eJZlfot ejZ~4t (5.Z9)

with

R(t) = envelope modul-tion, having an assumed maximum value

of unity

e(t) = phase modulation

fo= carrier frequency.

Then

Re Xx,x, Re f AA' 4 (t- T) g(t-T") eJZlt(' "44t dt
-0. c(5. 30)

00 c jtt r'e(t- )-e(t-r)J jZyr(, -4)t jZi~fo(T-T )

SRe r" AAI R(t -)R(t-,rl )e e e dt

Letting J
CL :' -T (5. 31a)

= : ', - * (5. 31b)

and then

t- = t' , dt= dt' (5.32)

it is found that

r -jZr (f0 a-PT) oo jZir[9(t'-a)-O(t' )] jZTr Pt'1

Re xx, xI = Rele' (AAIR(t )R(tt-a)e e dt . (5.33)

We may write Eq. (5. 33) as

ReXXx, XA,At ( aP)•cos [ZI(foa - c)-] (5.34)

where OD jz•[e~l~a)-()(t, ) j27r Pt'

XA, A' P) :f O AA R(t' )R(t' - a)e dt' (5.35)

and

E arg XA A .(aP) (5.36)

So Eq. (5. 27) becomes

E+E" ' IXA, A'1 (CLIcos([Zr(oa-Pr)-c]( e I n. e eX A , ' C )
-CO p(xt) dx' , (5. 37)

*•
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where it is understood that x represents (Tr,A) and xt represents ( At ,•t ,A'). If we

integrate, with respect to a, over one r-f cy=le, then

p (x0) i WI , p(x' )dx' (5.38)

where I0 is the modified Bessel function defined by01

I

£L+ 2T~ zcos(ZirfoL' +'y)
Io(Z)f="of 0 e da' (5.39)

a- -z!r
0

Eq. (5. 38) is the desired single-target version.

:;5.3 Example s

5.3.1 No-Signal Case

It is assumed in this single-target example that A = E = 0, although it

is not known that this is so prior to the measurement. Then Eq. (5. 38) becomes

E

I (x,Y) = e L17fe p(xI) dx'

The a priori density function p(x') is taken as the uniform distribution:

(1 (5.41)

t P~xt TrB-WA(ýBA)(EýBO

where

TA B (5. 42a)

(5. 42b)

0 < E < EB (5.4Zc)

Then EB El
I(e e74 dE")I x, Y) =- In •- je dE

B 0 EB

=n nEB- Ink,7 - e" (5.43)

Assuming that B

Sk(5.
B~
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then
SI p (x, Y) = n 7tT . (5.45)

We may interpret this equation as follows. Before the measurement, the echo energy
was expected to fall, with equal likelihood, between zero and the value EB, and the
range delay and Doppler shift were expected to fall uniformly in the intervals [TA' TB]

and[,A *B], respectively. Since, in fact, the echo energy was zero, we cannot
have obtained any information about r or . However, the energy value of zero was.
a possible a priori alternative within the expected energy interval. But the presence
of noise prohibits us from exactly determining that the energy was truly zero. In
fact, the final uncertainty in the measurement of energy is the uncertainty of the noise
energy alone, which is characterized by a standard deviation of aE = k7 . Eq. (5.45)
thus tells us that the measurement has permitted us to divide the a priori region of
energy uncertainty 10, EI into N= intervals, each of size k 7, and to declare
"(on the average) that the energy was in the lowest interval E A 0. The information so
obtained is that given by Eq. (5.45). In this example, further support is also advanced
for the choice of 6E = k 7 as a quantization level for energy.

5.3. 2 No A Priori Uncertainty

Here we assume that the true target parameters are known prior to
the measurement. That is, symbolically,

p( = (x' - x) (5.46)

Eq. (5. 27) is therefore
0 E' +E 1,(e~lx o •. • RevX, x

I = " I-fi e k e 5(x -x) dx' . (5.47)

Since, from Eq. (5. 26), we have

ZE (5.48)

then Eq. (5. 47) evaluates to

1(e)(x,y)= lin = 0 (5.49)

as would be expected.

We may also consider a case regarding partial knowledge of the parameters,

a priori. Suppose that, in the single-target case, we know range and Doppler but not
echo energy. Then

ii1
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•PW plt (- Tlr - 6e It- P(E) (5.50)

S~where

wh p(E) U (E , EB) (5. 51)

Then Eq. (5. 38) becomes

1(e)~ - B E- E+E (0AA )o~ ,,d'.(.2
I~)(x* Y) e-lnf e AAt(' pE dl (552

A

Assume, for illustration, that the signal pulse envelope (of duration P) is rectangular

so that

.8 A '' P (5 .5 3 )

Then, using

BIC At
dP( AI) (5.54)

Eq, (5. 52) becomes

AB A't +A 2  I A)(e M7 I o (rAtp P dA,
Sl~e(AjY) In " fAA

AAA

\ AB At "+A (AA'
l =A-t e -) AIo dAl ( A5.55)

The integral is now recognized as the integral of a Rice distribution and it evaluates to

approximately unity if the interval [AA' AB ] includes most of the area under the density

functiont Thus, we have

.l(e) (A,Y) t in ( (5.56Ap \k

which should be compared with the simpler example leading to Eq. (5. 45). It is

interesting to note that

: = A- P .(5.57)

quantization levels in the energy domain suggests

NI 3t I( Arms 58)

I__k -
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Souantization levels in the rms-amplitude domain. This im plies thaL rr.w amplitude is

"naturally' quantized into increments of

cr1 4  , (5.59)

which is the rms noise at the output of a filter of bandwidth I/P cps. This amount of

rms noise (determined above for arbitrary phase modulation and rectangular amplitude

modulation) is equal to that appearing at the output of the matched filter for a rectan-

gular CW signal pulse.

5. 3. 3. The Case of High Signal-to-Noise Ratio

We shall consider the case of large values of A and At, and shall also

restrict the analysis to a small neighborhood of the (Tr +) point in the 'r . @ plane

which is at the peak value of the integrand in Eq. (5. 381. (This point is equivalent to

the origin in the a - P plane.) We can then use the asymptotic form for the modified

Bessel functionb which is
S~I e

Io(Z) e , z >> . (5.60)

Then Eq. (5. 38) becomes
SE'+E [XA, At CL

I (e)e(x Y - 1 • e p(x' )dx . (5. 61)Ipe), y)= In A-tr (c,

1Tly
We define

X(au) : XAA, (a. (5. 62a)

= foU(t ) u(t - a) e dt , (5.62b)

where

u(t) R(t)ej2•0(t) = complex transmitted modulation. (5.63)

Near the point (O = 0, P = 0), and for A' s A, we can represent X(a, P) by a truncated

Maclaurin series

a (, ) (5. 64)

Evaluation 57 of the partial derivatives and use of the spectrum

U(f) [u(t) u(t) e dt (5.65)

tlt
fI
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leads to the result:

ZE l'WT 2 17
X(a, P) = E (l .r " "1 P?- +7t3 cLP) (5.66)

where

zE If I U*(f) f U(f) df (5. 67)

-T A O f u*(t)t u(t) dt (5.68)

P T(Oir2 A2 f f u*(t) tf U(f) e jzuft dfdt (5. 69a)

-uA2  (t) t ul (t) dt (5. 69b)

2E -co

In a peak-power-limited radar transmitter, rectangular amplitude modulation is gener-

ally employed to obtain maximum transmitted energy. If we assume this situation, then

the term U" is real-valued. We now substitute Eq. (5. 66) into Eq. (5. 61), while making

the assumption that, for the denominator of the integrand only, we can allow the approx-

imation
S AA'2E A,

XA, At(a' AA' X(CLp ) A (5.70)

within the neighborhood of (a = 0, P = 0) that we are considering. This is motivated by

the observation that the exponential term of the integrand drops rapidly downward (as

a functibn of a and P) during which the denominator is a slowly varying function.

Thus Eq. (5. 61) becomes

El +E 2EA' I T a 1 .T 2i (e)(• yD kg.A (l-y a . o P

y) -ln e 2 p(x' )dx'
IIP -C" (5.71)

We shall concentrate our attention on the range and Doppler information and will,

accordingly, set A = At while understanding hereafter that the integration is only over

T' and 4 ). Eq. (5. 71) then becomesiZ 2

I.(e (x,Y.) =-lnf CO e- 7( P 2-T ZihP) p(xt )dxt. (5. 72)

Letting

p(x,)= p(i, )p(4') (5.73)

ii
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where
p(r') U(rA, TB) p(4'): U(4',4B) (574)

Eq. (5. 72) may be written as

P(e)(xY} = in (5.75)-I (, a-z+ pt P- ~- 2p-U -P)
1 e " dx'

The numerator is the a priori surveillance area in the T - 4) (or a - P) plane. For a
fixed p, the width of the volume determined by the integration in the denominator may
be measured in terms of the equation

2P + Z p2
a2 i t-rp• + = 1 (5.76)

since this ellipse describes the locus of points at which the integrand is e1/2 times
its maximum value. The area of this ellipse is 5 7

0= i" (5. 77a)

?ra ar= ' (5.77b)
I I-

where 1
a --- (5.78)

a (5.79)

D=J''. (5.80)

The information is therefore seen to be related to the logarithm of the ratio of the a

pro surveillance area to an equivalent a pokiteriori area given by Eq. (5.77b). This

result is comparable to an expression such as Eq. (3. 51) or (3. 55a), except for the
additional term involving D, which we shall call the interdependence coefficient. For
given values of * and maximum information is obtained when D 0.

T

A*
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Since

T= u (t) t u' (t) dt (5. 81)
,• 2E

then the Schwarz inequality

If f*(t) g (t) dt 2 < f f*(t) f(t) dt . fg*(t) g (t) dt , (5.8Z)

with

f(t) =2iA U(t) t (5.83)

g(t) = - jA u, (t) (5.84)

shows that

• l1l <_ 1 t± . (5.85)

Therefore, we have

IDI l <(5.86)

In terms of D, the ellipse in Eq. (5. 76) is

CL ZD at f + Pt = 1 (5.87)

where a t and At are normalilzed variables given by

-' = = (5.88)

, p tA = -A (5.89)
'F I

In matrix form, the ellipse in Sq. (5. 87) is

The eigenvalUes of the sqi~are matrix are the roots of the characteristic equation

f=l1 , (5.91)

"4 -7 7 lt7 771-
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which are

X= 1+D (5. 92a)

X2 1- D (5. 92b)

The lengths of the semi-major and semi-minor axes are therefore

1 and 1 (5.93)

If D = 0, then the ellipse becomes a circle and we may say that there is no interdepend-
ence between range and Doppler information. This oý:curs, for example, if we have
rectangular amplitude modulation and no phase modul.tion, since then

j~w A 2 P/2

2E jZfA 2  tR(t) RI(t) = 0 (5.94)2E - P/2

In another practical case, suppose that rectangular amplitude modulation is used with
linear frequency modulation over a large time -bandwidth product PB. Then

/z-jz•r ep2 2_2r(t) jz•r o(t).
t-T- j2 / A2 e t (j2•r e 0(t) )dt

ZE -P/2

(2T)2 fP/Z A 2 t 0(t) dt (5.95)
SZ2EZE -P/Z

Letting
B P P

=(t) t < t < "- (5.96)

then 2 P/2 AB 2 rBP2 P2 2 2
ir 2E A B/t 2 dt = -P (5.97)

ZE 3

Also,
St-T" _ (Zw)2 yP/Z 2 t n.p

t E (2)P/ A 2 t 2 dt -I (5.98)

2E P/2

and

- E 2 B df - 2 (5.B99)
2E -B/Z.'
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So

D - 7 -7 (5.100)

The eigenvalues are therefore 0 and 2, and the ellipse has elongated to an infinite
length with the interdependence coefficient reaching its maximum value. Since the

1
semi-minor axis length is equal to and the ellipse (always) intersects all four axes

at + 1 , then the ellipse is readily deluced to be at an angle of 450 with respect to the
coordinate ca - PI axes.

4,

t

I

. A
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6. APPLICATION OF RESULTS

6. 1 Description of an Existing Advanced FM Radar System

In this chapter, a practical radar example is considered to illustrate the applica-

tion of some of the analytical results obtained previously. We shall deal with an ad-

vanced type of radar system having a high pulse-compression ratio, and demonstrate

quantitatively how its performance may be improved by means of the derived concepts.

Such a radar is the linear-FM (chirp-type) pulse compression system described in

reference 58, which has one of the highest pulse compression ratios implemented to

date 1: an operational radar, namely 8, 000. This Irange-channell system achieves a

nominal range resolution of 123 ft. and transmits sufficient energy on a single pulse to

obtatL a 15 db signal-to-noise ratio on a radar cross section of 0.1 m 2 at a range of

approximately 1000 nautical miles. Although this radar represents an advanced state-

of-the-art implementation, it will be shown that:

(a) By using the proposed nonlinear processing, the range resolution can be

improved by a factor in the order of4" , where p is defined in Eq. (3. 29).

(b) The detectionbi±1fornation criterion for setting the detection threshold

leads to a procedure in which detection probability increases with time for a constant

overall false-alarm probability. In a numerical example, it is shown that the new

procedure is substantially more efficient than a conventional Neyman-Pearson amplitude

procedure.

The radar has the following parameters:

Peak power 2.5 Mw

Pulse duration, P 2000 microseconds

Pulse repetition frequency, fr 30 pps (period, r r = 33 m sec)

Beamwidth 2. 2 degrees

Signal bandwidth, B 4 Mc linear frequency deviation
centered at f = 427 Mc

0Range window 16.4 nm

The system concept is readily explained from the simple block diagram in Fig.

6, 1. The EXCITER. generates a linear FM ramp at the radar' s pulse repetition fre-

quency. This transmitted frequency is labeled FR in Fig. 6. 2. The echo pulses E

arrive at a range delay To after signal transmission and, at that time, a range-track-

ing local-oscillator FM ramp is generated by the EXCITER, which in called the delayed

* Only one target echo ramp is shown in Fig. 0. 2 for illustration but there is actually

one for each target present.
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Fig, 6. 1 Simplified Block Diagram of an Advanced FM Radar
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coherent frequency ramp DCFR. The DCFR is heterodyned with the echo signal and

the difference-frequency signal is passed through a real-time spectrum analyzer

(Coherent Memory Filter) and displayed on an oscilloscope. If the DCFR and the echo

E exactly overlap in time (AT = 0), the difference-frequency signal consists of a con-

stant-frequency pulse of duration P with a frequency of

fd= ýF "fD

where

hF = i-f offset frequency

fD Doppler shift frequency.

Since the pulse width is equal to P, the spectrum analysis can determine f D with a

resolution in the order of 1 = 500 cps. In fact, we can think of the spectrum analyzer

as a bank of contiguous filters# each having a bandwidth of cps which is matched to

the duration of the difference-frequency pulse. The ratio of peaked mean-square !17

nal to mean-square noise at the spectrum analyzer output is calculated from the

matched-filter output ratio E/No where E is input signal energy and No is noise

power spectral densityb If S is the rms value of the difference-frequency sinu-

soidal pulse, then

2 2
E Srms p Srms (6.1)

which shows that the effective noise bandwidth of the radar is 1/P cps.

If the DCFPR does not exactly overlap the echo E in time, then the difference fre-

quency is

SCd =AT - fD (6.2)

where

Bor = ramp slope = 2000 cps/microsecond. (6. 3)

Ao < << , (6.4)

the diffe~nce-freqUency pulse has a duration of approximately P. So the spectrurn

analysis silI resolves frequencies in the order of I/P cps and therefore range-delay

resolutionqs obtained such that

F ,
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1 (6.5)

or 0.25 microsecond ( (6.6)

Within the radar' s range window of 16. 4 nm, there are about 810 range resolution

cells, which also represents the number of independent opportunities for a false alarm

for each radar pulse. A characteristic property of all linear-FM systems is that there

is a severe interdependence (or ambiguity) between range and Doppler information.

This interdependence was demonstrated by the defined interdependence coefficient D

that was shown to have the maximum value of unity for linear FM. The interdepend-

ence is clearly seen in the radar under consideration since both range and Doppler

effects produce changes in the same measured variable fd" In fact, the interdependence

is so extreme that, for a number of closely-spaced targets flying at nearly the same

velocities# the fd frequency axis is used entirely as a relative range axis. (The 500 cps

Doppler resolution corresponds to a coarse 578 ft/sec radial velocity resolution, while

the 0. 25 microsecond range resolution corresponds to a fine range resolution of 123 ft.)

6. 2 Design of an optimum Radar System

6. 2.1 Resolution Improvement

A linear matched-filter radar followed by a linear envelope detector

produces a voltage proportional to the correlation surface:

"jro,4.)I If r(t) g* (t j2 •t J dt , (6.7)

where

g(t) the transmitted signal

= AO g(t - TO) e JZir 0 t + v(t) = noisy received echo.

The width of this surface was seen to be 1/B in the T direction and 1/P in the • direction,

where B and P are the signal bandwidth and duration, respectively.

Since the a osteriori probability density function p(r, A/ ) was found to be pro-

portional to 1 0 Jr (r,•)j), range and Doppler resolutions in the order of the width

of - 1T, +/ý) can be obtained by following the linear detector of the preceding linear-
f matched-filter implementation by a nonlinear element having the characteristic of the

modified Bessel function I (x). This would then yield resolutions of 1 and 1

for r and respectively, where

.... . "
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ZE 2 X echo signal energy

noise power spectral density (6.8)

A block diagram of such a system is presented in Fig. 6. 3 where a single channel is
illustrated. At the output of the amplifier G, a voltage x(t) occurs having a value of

g I r (t) I where g is adjustable by means of the amplifier gain, G.

We wish to implement a final detected signal S o(t) that is proportional to

LM o(1 1 r(t)l (6. 9)

From Eq. (6. 7) it is seen that the maximum value of I r (t) I is the i iatched value

Ir (T'of 4O)j ZE (6.10)

where the approximation stems from the conventional neglect of the noise term v(t),

which is valid for high signal-to-noise ratios. By defining
iI V Mt() r (t) , (6. U)

Eq. (6. 9) can be written as

p (t) = 10 (p'r (t)I) (6.12)

where

tmax * N 1 (6.13)

The 1o(X) characteristic Was shown in Fig. 3. 7. We may set up the system optimally
for a specific signal-to-noise ratio p by applying such a calibration signal at the re-

ceiver input and adjusting the gain G so that the peak response corresponds to XM= P

on the input (abscissa) axis of the implemented Io(x) characteristic. When this adjust-
ment has been made, the noise power level is at a factor of p below the peak power

of the signal response (or p/2 below the rms-squared value at peak response), and
therefore the noise power is always concentrated below the knee of the 10 (x) curve.

In the practical case, the input signal-to-noise ratio may cover a range of possible

values. Now suppose that we have optimally set the gain G for a particular signal-to-

noise ratio p0o I a signal voltage twice as large as expected then arrives, Ir(t) I in-

creases by a factor of 2# as indicated by an increase in Ao of Eq. (6. 7). For the same

gain G prtv-iously used. the excursion of x in Fig. 3. 7 increases by a factor of 2. How-
ever, the increase in input voltage by a factor of 2 implies an increase in input p by

a factor of 4 so that$ optimally, the x-excursion should have increased by a factor'of

4. Thus the system is gain-matched only for p = po. For illustration, suppose that
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the input signal-to-noise ratio may vary such that

4 < p < Z5 (6db to 14db) . (6.14)

As a compromise, we may set our gain G so that it is optimum for an input signal of

2E 0

Po= lOdb = 10 = E . (6.15)

If the signal with p 6db should occur, it is a factor of 4 db = 1. 58 less in voltage and

its peak response will only reach 10/1. 58 = 6. 33 on the x-axis instead of p0 = 10. On

the other hand, if a signal with p = 14db should enter, its peak response will reach

1. 58 x 10 = 15. 8 on the x-axis. Fig. 6. 4 shows a comparison of the normalized res-

ponse I1p Ilr' (t)h/I0 1(p) obtained in the above situations, where it is always assumed

that the nonlinear system is set for po = 10; i. e., we are implementing

whr IM = 10 (po (t) (6.16)
where

,r' Wt r(t) (6.17)
0

in which E is a constant while r(t) changes proportionally with input voltage. Fig.

6.4(a) illustrates a typical linear response and Fig. 6.4(b) shows the gain-matched

nonlinear response for p = po = 10. The significance of the improvement is best

illustrated by observing that the lateral (range) jitter of the peak in Fig. 6.4(a) is

characterized by a standard deviation of 1/P Jpo in range delay or Q/BJPo = l/PJPo

in frequency, as indicated on the figure, where it is assumed that p0 is the actual input

value of p. Thus the jitter (precision) is less than the resolution (granularity or accur-

acy). On the other hand, the peak width (granularity) in Fig. 6.4(b) is comparable to
the lateral jitter (precision). The situation is analogous to observing an ammeter

reading in which the thickness of the needle is equivalent to our resolution width. It

is most desirable to have the needle width comparable to the needle jitter (as in

Fig. 6.4(b)) rather than much larger (as in Fig. 6.4(a)) or much smaller. Likewise,

"the granularity of the scale on which we are reading should have its smallest division

comparable to the jitter width (and therefore the needle width also). In Fig. 6.4(c),

the response is given for an input p of 6 db while the receiver is set for po = 10db.

Here the noise 'becomes more prominant since the gain G is too high. Also, the width

of the peak would be narrower than is theoretically j.ustified so that the lateral jitter

would exceed the response width. Fig. 6.4(d) shows the response for p = 14db, which

is higher than the set po = 10. Here the paak width is not as narrow as it should be

and some resolution is sacrificed. In most applications, the Bessel-function detector

~•fr
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may be used in parallel with a standard linear detector and then employed for improved
resolution on a target whose signal-to-noise ratio can be judged from the linear dis-

play. Thus the gain G of the nonlinear system may be properly adjusted for near-

optimum performance.
0

An alternative to the above implementation is to replace the linear detector in
Fig. 6. 3 with a square-law detector. Then we are implementing an output signal So(t)

that is proportional to

' (t) = 10 (po2 j r (t)2) , (6.18)

where

Ir' (t) I max " I

and the gain G is set so that an input calibration signal with signal-to-noise parameter

p0 will give a maximum excursion of xM = p2. Now, however, an increase in input
voltage by a factor of 2 wili change the x-excursion by a factor of 4 and eb..We or.e $4

.. . i~•ew max uIin value xM will be p , as it should. Therefore, this method employing

rsa square-law detector always remains gain-matched, although we have altered theSresponse shape because of the presence of IJrI (t)I1z rather than I r' (t)l•

6.2,2, Improvement in Detection Capability by Employment of the Detection-

Information Procedure

In the radar under consideration, for each transmitted pulse there are

n 810 independent opportunities for a noise threshold crossing and one opportunity

for a threshold crossing due to signal (with a single target). We shall assume that a
threshold test is made for each such transmitted radar pulse. The detection probability

PD rmay be calculated from curves or tables of the Rice distribution for any assumed
signal-to-noise ratio. 4A , The false alarm probability is expressible as

S 1- (1-P).D1 810 P for 610 P , (6.19)

AA F FA' FA <

where

S= probability that at least one noise sample exceeds the
threshold out of 810 samples, where each sample has

an individual probability (Rayleigh-distributed) P1A

of crossing the threshold.

We may plot I vs. threshold-to-tms noise level RT/c for various values of signal-to-

"noise ratio, as shown in Fig. 6, 5.

As an example of the application of the above results, we shall assume that the

di4
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threshold employed is 4, 56 This yields maximum infozmation for S/N ratios from at

least 6 db to 12 db, although the amount of information decreases with decreasing S/N

values. The false-alarm probability for a single radar pulse is then

FA 810 PFA = 0. 0405 , (6.20)

from the Rayleigh distribution. We now accept a Rnormal3 false alarm rate based on

this probability. We postulate a detection procedure in which a single output pulse is

generated if there are one or more threshold crossings per radar pul..e. If there is

no signal present, the probability c" getting such an output pulse is PFA = 0. 0405.

This may be considered to be a stochastic process in which the probability of some event

occurring is p0 = 0. 0405. Then the probability of exactly k such events in A trials is

given by the binomial distribution

" •")/=nPo \ po) , (6.21)

••- - which is approximately equal to the normal distribution:* N(;Po, - p (1 - po)) for 5 6

00
(I - po) Z 3. In the radar under consideration, the pulse repetition frequency is

f .30 pps so the normality approximation will hold after a time duration of about

or

S-o-- 77 pulses (6.22z)

= 2. 6 seconds 0  (6.23)S= pps*

The density function foi output pulse rate k/T isN(.o , ~* The dura-S\T T-
tion T will be taken as an integral number of pulpe reetitio, periods, so the density
function may be expressed as being N (fr & r P tl-po) ). Here it is seen that

the mean value of rate is constant and the variance ciecreases proportionally with time
duration, The mean value of false-alarm rate can be determined precisely from stand-

14 by observations on the radar, When a signal appears, the data rate increases and es-

sentially becomes equal to the sum of (a) the false alarm rate and (b) the rate with signal

present but no falte alarms included. To a good approximation, this new rate with

signal present ha•. the distribution of the sum of two independent normal variables and
+ £ fp° (l"p°) _r__(____

is N f o + P.. + l , where p1 = is the probability

E Even when the normal approximation does not hold, however, the mean and
variance are still given by np0 and np 0 (l- p0 ), respectively.

I;
• i
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that a signal -plus -noise sample exceeds the threshold. The two rate density functions
(signal absent and signal present) were illustrated in Fig. 4. 2.

We may apply the procedure by specifying some overall false-alarm probability,
say PFA = 0. 01, after T seconds of observation time. In the absence of signal, the
density function for rate is (approximate fox ýT < 2. 6 seconds)

S(f p c (1 -P
N Po .r. = N (1. 215, 1167 (6.24)

•. where
hrfr = 30 pulses per second

po = 0. 0405 = probability of a false alarm for one radar pulse
(810 noise samples).

The amplitude threshold is assumed to be set at14. 5, with respect to rms noise. For
an overall false alarm probability o. PFA - 0. 01, the data-rate threshold must be set
at 2, 33 standard deviations above the mean value. This data-rate threshold rT is
tabulated in Table 6. 1:

TABLE 6.1 DATA-RATE THRESHOLD FOR PFA = 0. 01

(sconds+) rT (output pulses per second)

1 3.730
2 2.880
S3 2.707
"4 2.4745 2. 340
6 2.264
7 2.185
8 2.122

9 2.033
10 2.012

As an example# we shall assume the sudden appearance of a signal with an rms signal-
to-noise ratio of S/N = 6 db. With the chosen amplitude threshold of 4. 5, the prob -
ability of a single sample of signal-plus-noise crossing the amplitude threshold is
Pa " 0. 07. The probability density function for rate therefore changes to

r o- pl) 3.119X -- - ,o + , ., •l f=OI P ) i f l ( N ( 3 . 3 1 5 , - -- )I -- )
T T"

_ _ _ _ _ _ _ _ _ _ _ ___ ___
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table 6. 2 lists the difference between the mean value and the threshold rate rT in

standard-deviation units, and also the corresponding overall detection probability:

Table 6.2 DETECTION PROBABILITY FOR DETECTION-
NFRIMATION PROGEDURE, SIN = 6 db

"Mean Value Minus r.r
T (seconds) (standard deviation unfis) D

2 0.349 0.64
3 0.592 0.72
4 0.955 0.83
5 1.235 0.89
6 1.465 0.93
7 1.695 0.96
8 1.920 0.97
9 2.190 0.99

10 2.342 0.99

SFor comparison, we may consider the Neyman-Pearson approach with the same

radar. Again we shall assume an overall false-alarm probability of 0. 01. After T
t seconds, there are a total of 810l rT independent noise samples which can cross the

amplitude threshold, The overall probability of a false alarm is
( 810 f

FA 1. (r- 'A, = 24,300 T P FA = 0o.01 o(6.26)

where

P1 tprobability that a single noise sample exceeds the amplitude

thre shold.

The aingle-sample false-alarm probabilities are tabulated in Table 6. 3 with the required

thresholds:

Table 6. 3 S u4O.GI SAMPLE FALSE ALARM PROBABILITIES
'• AND THRESHOLDS FOR NEYMAN-PEARSON

PROCEDURE (overall PFA = 0.01)

T _(eco94s) PFA Threshold, RT/3N

2 2.06 x 10- 7  5.55

1. 37 x 10- 7  5.63

4 1. 03 x 10- 5.67

S8.23 x 10-8 5.71
6 6.86 x 10 5.74

-8

S5. 88XI0".5.76

so is1 x 10- 8 5.79

9 4.58 x 10" 8 5.82

10 4. 12 X 10" 8 5.84

V=

________ _ __ _ _ __ ___ ___
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For the listed thresholds, the single-sample detection probability PD with S/N 6db
ranges from 0. 005 to 0. 002 (using the Rice distribution)as T varies from 2 seconds

to 10 seconds. The overall probability of detection is given by

D DI:PD = -l -P)r (6. 27)

and is tabulated in Table 6.4:

Table 6.4 - DETECTION PROBABILITY FOR NEYMAN-PEARSON
METHOD, S/N=6db

T (seconds) PfrT

2 0.0050 60 0.26

3 0.0042 90 0.32
4 0.0038 120 0.38
5 0.0033 150 0.40

6 0,0030 180 0.44
7 0.0028 210 0.45

8 0. 0025 240 0.46

9 0. 0022 270 0.46

10 010020 300 0.46

Comparative results for the two procedures are plotted in Fig. 6. 6. The higher detec-

miztion efhiciency oa the detection-information procedure is attributed to its initial opti-

mization of the amplitude threshold independent oo the detection and false alarm prob-

abilities. In the Neyrnan-Pearson amplitude approach, however, the amplitude threshold
determines the false alarm probability. In the cited example, the particular overall

high and relatively inefficient for detecting low-level signals such as the signal assumed
atlSeN = 6 db,

In addition to the greater efficiency of the detection-information approach, there

are no "false alarms" in the sense understood in the Neyman-Pearson amplitude

approach. That is, in the Neyman-Pearson amplitude method a false alarm is con-
sidered to occur whenever noise alone crosses the amplitude threshold. However, in

the detection-inormation procedure, a certain standby threshold-crossing rate is

accepted as normal. An alarm occurs only when the rate increases "significantly4 .

Just how much of a rate increase is considered significant depends upon the confidence

we wish to achieve in avoiding a 'false alarm type of mistake".

___ ____ Ii
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Y 7. CONCLUSION

7.1 General Re suits

By employing a strict information-theory approach to radar, it has been possible
to develop a new view of radar signal processing leading to a substantial insight into
"ideal" matched-filter receivers. This generalized viewpoint has yielded a number
of significant results, as listed in Chapter 1, which include a method of improving radar

resolution by means of a nonlinear Bessel-function envelope detector and a new radar
detection philosophy based upon a defined "detection information% %nd a data-rate
threshold. In an illustrative example dealing with an existing advanced FM radar, the
new detection procedure was shown to be superior to a conventional Neyman -Pearson
procedure applied to amplitude,

Of a more basic nature, theory and examples have been presented to show that
the information obtained by a radar is directly related to the input physical entropy of
the receiver, with this physical entropy being synonymous with signal-to-noise energy
ratio (SNER). This result implies that the parameter information has the character of
a physical entity rather than only an arbitrary measure. Relations were also developed
which clarify the role of the SNER in improving radar detection and in improving the
measurement #reliability# of the radar.

"A specific formnula for parameter information was also derived, in terms of a
multiple-target echo ambiguity fUnction, which may be used to evaluate the variation
of the information with changes in the radar waveform or the target environment.

Analysis of the formula for high signal-to-noise ratios has lead to the definition of an
explicit interdependence coefficient between range and Doppler information. I

A new representation and treatment of time-limited or bandwidth-limited white
noise was developed which was found to be of considerable use in the information-theory
approach to radar analysis, This representation in terms of modes (or degrees of
freedom) should also be found useful in other noise problems. j

S7.2 Further Work

Considerable further work may be done along the lines pursued in this dissertation.

Additional theory and examples to substantiate the physical nature of parameter infor-
mation would be desirable, and possibly an experimental "transducer" to convert such

information into useful work.

A major problem area in current radar design deals with waveform analysis and
synthesis. It is suggested that a useful tool in such problems would be the evaluation
of the expected parameter information for specific assumed target distributions.
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This would appear to be a valuable adjunct to the present practice of studying the am-
biguity function of the waveform. In particular, it yields a single number as a per-

formance measure in a target situation that may be quite complex.

It was shown, for the linear receiver, that the parameter information does not
exceed the input entropy. In the case of the nonlinear receiver, this condition was

postulated (Eq. 3. 66). A proof or demonstration of this would be desirable for the

nonlinear case.

The existence of a positional type of information, and its relation to the form of

Shannon' a information, as in rq. (3.116), opens the door to a more general theory of

communicationx in which both positional and amplitude information are communicated

over a channel. It would be worthwhile to explore this broader view of a communica-

tion link.

The improvement in resolution by means of a Bessel-function envelope detector,

and the new radar detection procedure based upon detection information, both appear to

be Valuable contributionjs to cu-.rent radar practice and should lead to effective, yet

siAple, means of improvinog radar performance. It is recommended that these tech-

nlques be implemented and their operational performance compared to that of conven-

tional practice.
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Appendix A. Review of Complex Notation

Assume that a general real-valued bandpass signal voltage is

v(t) = R(t) cos (Zi fct + Zn it)) (A-1)

where

Ic = carrier frequency

R(t) = instantaneous amplitude

2nrG(t) -- instantaneous phase.

Its complex representation is given by
",j2ttfc jZi'0 (t) jZirfc

gt) M X(t) e - R(t) e e (A-Z)

which has the properties that

(a). x(t) m low-pass equivalent signal repree-enting instantaneous

&mpiitude and phase modulation

(b). Ret(t) W real physical signal

(C). 16 (t) R(t) = instantaneous envelope of physical signal

(d.A (f A ~) o

a 0 for f<o,

where (A) denoted the Fourier transform.

Ii.
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Appendix B. Entropy Increase Due to Mixing

If all of the energy E were added uniformly, the system temperature would rise

from 7 to*o + A7 . The temperature 7 + A9 is also the temperature to which
0 0 0

the system would settle after the energy E, once added to subvolume V(x ), subse-
quently diffused adiabatically throughout the entire volume. During such a~diffusion

process, the increase in e-Fystem entropy is

S•.2o +A7 go +6S C"fo d7 w+Co d7 (B-I)

vW v vq
0 go + qA67

= Cvw in 1 + 7 -) w l(1+ A 71) +Cv / -o =

But•+ Bu / go +÷A.? 6-F.I~+ (B-2)
i++:++ in l,• ÷q•7 n(1 + ln( "•L'0

so that
5S• Cvwln (1+ A-7) CM n 1+qA2)

;~ ~ .-20 " qV .70n I+

As - AS' (B-3)
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